天体物理研究所

首页 > 学术活动 > 正文
学术活动

Journal Club: Revisiting Vacuum Stability on the Georgi-Machacek Model

发布时间:2024-04-18  点击:

时间:2024年4月22日 13:00 ~ 16:00

地点:物理A楼615

主讲人:都小康,博士,河南省科学院物理研究所助理研究员。2012—2016年在郑州大学物理工程学院取得学士学位,2016—2018年在郑州大学物理学院取得理论物理学硕士学位,2018—2022年在郑州大学物理学院取得理论物理博士学位。都小康博士主要从事超出标准模型的新物理研究,特别是在最小与次最小超对称模型结合不同的超对称破却传递机制、模味道对称大统一模型以及GM模型等方向进行了较多研究。

单位:河南科学院

摘要:

The current vacuum stability constraint on the GM model are obtained by ensuring that the scalar potential remains stable at the electroweak (EW) scale. This is achieved by solving the boundedness-from-below condition while ignoring the mass dimension couplings. In fact, it is known that the constraint of boundedness-from- below should be derived at large field values by the Large-Field-Approximation (LFA). For the behavior of coupling parameters at high energy scale is similar with that at large field value, we propose to reevaluate the vacuum stability constraints of the GM model using the High-Energy-Scale-Approximation (HESA) to simulate the LFA approximately by running these parameters to high energy scales with renormalization group evolution (RGE). Surprisingly, we find that numerous parameter spaces excluded by the previous vacuum stability constraints can still survive the theoretical and experimental limitations if we adopt the new bound of vacuum stability at high energy scales. On the contrary, quite a lot of parameter spaces that can satisfy the vacuum stability constraint at the EW scale cannot survive the new bound of vacuum stability at high energy scales.

邀请人:张阳


上一条:MLAnalysis软件包简介 下一条:Journal Club:Squashed Entanglement from Generalized Rindler Wedge