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Band gap and band alignment prediction of
nitride-based semiconductors using machine
learning†
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Nitride has been drawing much attention owing to its wide range of applications in optoelectronics and

there remains plenty of room for materials design and discovery. Here, a large set of nitrides has been

designed, with their band gap and alignment being studied by first-principles calculations combined with

machine learning. The band gap and band offset against wurtzite GaN accurately calculated by the

combination of the screened hybrid functionals of HSE and DFT-PBE were used to train and test

machine learning models. After comparison among different machine learning techniques, when

elemental properties are taken as features, support vector regression (SVR) with radial kernel performs

best for predicting both the band gap and band offset with a prediction root mean square error (RMSE)

of 0.298 eV and 0.183 eV, respectively. The former is within the HSE calculation uncertainty and the

latter is small enough to provide reliable predictions. Additionally, when the band gap calculated by

DFT-PBE was added into the feature space, the band gap prediction RMSE decreased to 0.099 eV.

Through a feature engineering algorithm, the elemental feature space-based band gap prediction RMSE

further drops by around 0.005 eV and the relative importance of elemental properties for band gap

prediction was revealed. Finally, the band gap and band offset of all designed nitrides were predicted

and two trends were noticed: as the number of cation types increases, the band gap tends to narrow

while the band offset tends to increase. The predicted results will provide useful guidance for precise

investigation of nitride engineering.

Introduction

Machine learning, a popular data mining technology that has
been widely used in computer vision, speech recognition and
natural language processing, has also recently been effectively
used for materials research,1 specifically, in property prediction2

and prescreening in high-throughput searches for materials.3,4

On the other hand, nitride semiconductor materials have
emerged as one of the most important classes of materials in
the modern semiconductor industry over the past 40 years. This
family of materials, which traditionally consists of wurtzite
III–N binary compounds, such as AlN, GaN, and InN, and later
involved II–IV compounds like Zn(Sn,Ge)N2 with various forms
of alloys, has shown multiple significant applications in light-
emitting diodes, lasers, photodetectors and photovoltaics owing
to a broad range of band gap values ranging from deep UV to
terahertz.5 Despite their great accomplishments, nitride semi-
conductors are still relatively unexplored compared to other
families of materials such as oxides and there remains broad
space for materials discovery and design.6 Nitride design is
highly motivated by the great number of possible but unexplored
structures with promising optoelectronic properties. The struc-
tural diversity and property uniqueness of nitrides partly origi-
nates from the high valence (�3) of the nitrogen element, which
requires either metal elements with a high valence or a large
number of low valence metal elements in various combinations in
a formula unit of a nitride compound. In nitride semiconductor
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design, the property most worth-investigating is band gap
because it is the determining factor that affects the performance
of nitride semiconductors in optoelectronic devices and is thus
also regarded as the most commercially significant property.
It has been demonstrated that band gap exhibits satisfying tun-
ability when alloying different metal elements or altering com-
positions in nitride compounds.7,8 In addition, nitride materials
have also been used in semiconductor heterojunctions.9,10

In semiconductor heterojunction engineering, the band offset
between two connecting materials acts as the key parameter that
determines junction performance, such as potential barrier and
mobility.11 Therefore, designing new nitride materials through
elemental and compositional modulation followed by band gap
and band offset measurement or calculation should be an
effective way of discovering new nitride semiconductors.

Owing to the aforementioned extremely large amount of
possible nitride structures, experimentally, it is difficult to
fabricate and characterize the overall possible new nitride
semiconductors. From a theoretical perspective, although conven-
tional density functional theory (DFT) is relatively computationally
efficient, it suffers from obvious band gap underestimation.12

Accurate band gap calculations require advanced methods, such
as the screened hybrid functionals of Heyd–Scuseria–Ernzerhof
(HSE)13 or many body perturbation theories;14 however, these
are both far more computationally expensive than DFT and are
not able to be applied to large materials sets. For band offset
calculation, although using DFT for interfacial potential align-
ment is accurate enough,15 typically, a superlattice that consists
of hundreds of atoms needs to be built up even for a simple
compound, which is also computationally expensive when
applied to large materials sets. A successful machine learning
model is typically trained by a small subset of a large dataset
and is able to predict the whole dataset within an acceptable
error. In the case of band gap and band offset calculation in
new nitrides, if accurate first-principles calculations are per-
formed on a small subset of nitrides or their junctions and the
results are used to train a machine learning model, it is highly
likely that all nitrides in the design space can be accurately
predicted. Work on band gap prediction by using machine
learning methods has been reported: Zhuo et al. used 136
engineered elemental features and an SVR model trained and
tested on 3896 various forms of semiconductors for experi-
mental band gap prediction, achieving a RMSE of 0.45 eV.16

By using 18 features including both elemental properties and
low-level DFT computational results of compounds, Lee et al. used
an SVR model on 270 binary and ternary compounds and achieved
a RMSE of 0.24 eV in experimental band gap prediction.17 Weston
et al. trained and tested an SVR model on 284 I2–II–IV–VI4 kesterite
compounds with HSE calculated band gaps by using 12 elemental
features, achieving a RMSE of 0.283 eV.18 To the best of our
knowledge, by using a machine learning approach, neither
systematic work on nitride band gap prediction nor band offset
prediction for bulk materials have ever been reported.

In the present paper, 16-atom constructed wurtzite nitrides in an
orthorhombic cell were studied and 68 115 possible materials were
considered based on all possible cation–nitrogen combinations

in the design space. 300 out of the total 68 115 materials were
randomly selected and their band gap was calculated by using
the hybrid functionals of the HSE method and the band offset
against wurtzite GaN was calculated using the combination of
HSE and DFT-GGA (Generalized Gradient Approximation) based
on interface models. The calculated results were used to train
and test machine learning models. Various machine learning
models were tested and their performances were compared with
each other in terms of RMSE. By using 18 accessible elemental
properties as features, radial kernel SVR with an RMSE of
0.183 eV performed best for band offset prediction. For band
gap prediction, radial kernel SVR is again the best model and
shows an RMSE of 0.298 eV with the same 18 elemental features.
Through feature engineering, 26 elemental properties were taken
as features and the RMSE decreased by around 0.005 eV com-
pared to 0.298 eV and the relative importance of elemental
properties for band gap prediction was found. Our results show
that the designed nitrides exist in all valuable band gap ranges
and, interestingly, as the number of types of cations increases
from 1 to 8, the mean band gap decreases and mean band offset
increases. Both the predicted values and discovered trends with
cation type number will be useful as guidance for computational
and experimental investigations on nitride engineering with
higher precision.

Methodology
a. Materials design space

The materials studied in this paper have been derived from a
16-atom 2 � 2 � 2 supercell of wurtzite GaN by cation trans-
mutations and combinations. In the design space, +2, +3 and
+4 cations were considered to occupy the positions near nitro-
gen anions. +2 cations are from group II A: Be2+, Mg2+, Ca2+,
Sr2+ and Ba2+ and group II B: Zn2+ and Cd2+; +3 cations are from
group III A: Al3+, Ga3+ and In3+ and group III B: Sc3+ and Y3+;
+4 cations are from group IV A: Si4+, Ge4+ and Sn4+ and group IV
B: Ti4+, Zr4+ and Hf4+. With the consideration of the proper size
of the total materials set, occupations are divided into three

Fig. 1 The nitride structure in the design space and positions of 16 ions.
The eight labelled balls are cations and the other eight unlabelled balls are
nitrogen atoms.
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types and rules are shown in Fig. 1. All eight cation positions
are entirely symmetric. Type 1: I, III, V and VII are occupied by
+2 cations while II, IV, VI and VIII are occupied by +4 cations;
type 2: all eight cation positions are occupied by +3 cations;
type 3: I and III are occupied by +2 cations, II and IV are occupied
by +4 cations while all the rest of the cation positions are occupied
by +3 cations. In total, 68 115 different nitrides were constructed
and 300 materials were randomly selected for training and testing
of the machine learning model. These 300 nitrides with feature
space and all computational results from first-principles calcula-
tions are listed in Table S1 in the ESI.† For the nitride compounds
designed in this work, owing to the high electronegativity of the
nitrogen atom, the binding energy of the system is usually high
and it can be expected that the nitrides in the design space should
be thermally stable. It has been checked that the formation
energies of the 300 randomly selected materials are all negative.
These calculated formation energies are listed in Table S1 in the
ESI.† Therefore, the designed 16-atom supercell based on wurtzite
GaN is reasonable in this study.

b. First-principles calculation

The first-principles calculations were performed using the plane-
wave pseudopotential as implemented in the VASP code.19,20 The
electron–core interactions are described with the frozen-core
projected augmented wave pseudopotentials.21 The generalized
gradient approximation (GGA) formulated by Perdew, Burke, and
Ernzerhof (PBE) as the exchange–correlation functional22 with a
cut-off energy of 500 eV for basic functions was chosen in all of
our calculations. A reciprocal space sampling of 6 � 5 � 6
Monkhorst–Pack mesh23 of the Brillouin zone is used in the
structural optimizations. All the structures are fully relaxed until
the forces on each atom are smaller than 0.01 eV Å�1 with a
tetrahedron method with Blöchl corrections in broadening of
0.05 eV. The screened hybrid functional of HSE with a = 0.3124

rather than the typical value of 0.25 was performed on PBE
optimized structures for band gap calculation. A comparison test
between the HSE calculated bandgap based on an exchange
parameter of 0.31, typical value 0.25 and experimental or GW
calculated band gap values for seven nitrides in the design space
indicated that 0.31 leads to more accurate bandgap values. The
test results are tabulated in Table S5 in the ESI.† For band offset
calculation, 300 superlattices were formed on the PBE optimized
isolated nitrides along the (001) direction as (XN)n/(GaN)n, where
n = 5 and XN represents each of the 300 nitrides we have
randomly selected. All the energy levels in isolated materials
have been calculated through the HSE method and energy
levels in the constructed interface models have been calculated
at the DFT-PBE level.

By using the DFT-PBE method, for each constructed nitride
compound, the energy of the compound (EC) and the energy
of the most stable elementary substance of every component
element (EI–VIII) are calculated. Formation energies (Ef) were
obtained through eqn (1):

Ef ¼ EC �
XVIII

I

Ei: (1)

The band offset against wurtzite GaN was calculated using Wei’s
core level method25,26 with the following eqn (2):

DEV(XN/GaN) = DEV,C0(XN) � DEV,C(GaN)

+ DEC0/C(XN/GaN) + AV(XN) + AV(GaN) (2)

where DEV,C0(XN) = EV(XN) � EC0(XN), DEV,C(GaN) = EV(GaN) �
EC(GaN), EV is the energy level of the valence band maximum
(VBM) in isolated materials, EC (EC0) is the core energy level
in isolated materials, DEC0/C is the core energy level difference
between two materials at both sides of an interface model con-
structed and AV is the valence band deformation potential. The
core level has been set to be the 1s level of the nitrogen atom
owing to the adequately low energy, which is around �370 eV.
Considering the geometric similarity among constructed nitrides
in the design space, for simplicity, it was assumed that the
valence band deformation potential of each compound when
connected with wurtzite GaN was neglected, i.e., AV(GaN) +
AV(XN) = 0. Consequently, the band offset between wurtzite
XN and GaN can be written as DEV,C0(XN) � DEV,C(GaN) +
DEC0/C(XN/GaN). Calculated band offsets were compared with
the widely accepted results reported by Wei25 in Table 1, which
shows satisfying consistency.

c. Machine learning

Machine learning work in this paper was implemented in
Python 2.7 code with frameworks Scikit-learn27 for SVR and
Tensorflow28 for linear regression and neural networks. Three
types of machine learning models were used: support vector
regression (SVR) with linear, polynomial and radial kernels,
linear regression and neural network (NN) with single hidden
layer (ANN) and two hidden layers (DNN). All hyper-parameters
were optimized. In order to prevent overfitting, the L2 regular-
ization term was added to the loss function of the NN models.
According to previous work, the covalent radius, electronega-
tivity and valence of each component element are three of the
most common elemental features chosen for machine learning
predictions of band gap properties. For example, electronega-
tivity, ionic radius, and row in the periodic table have been used
by Weston et al. in the prediction of bandgap of I2–II–IV–VI4

kesterite compounds.18 Elemental information including abso-
lute value of the formal ionic charge, period in the periodic table,
atomic number, atomic mass, van der Waals radius, electrone-
gativity, and the first ionization energy were chosen as features
for bandgap predictions in binary and ternary compounds by
Lee et al.17 From the view of physical intuition, covalent radius,
electronegativity and valence are the most important electronic
properties of an element and should be the most relevant and
effective descriptors for electronic band gap and alignment

Table 1 Computational band offset comparison between our method
and Wei’s results

Band offset calculated (eV) Band offset reported (eV)

AlN/GaN �1.11 �1.2825

InN/AlN 1.16 1.1125
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predictions in this study. Therefore, these three elemental
features have been chosen as an initial trial. After removing
symmetrically repeated values, an 18-dimensional feature space
was built and used first. Model performance was evaluated by
averaged RMSE of the validation set in 10-fold cross validation.

Results & discussion

In order to check if the 300 randomly selected nitrides are
adequate to effectively learn band gap and band offset, the leave-
out-one-cross-validation (LOOCV) RMSEs of radial kernel SVR
models trained and tested on randomly selected subsets of the
300 nitride samples were calculated. Band gap and band offset
prediction RMSE with subset size are plotted in Fig. 2(a) and (b),
respectively. The curves were fitted with power functions29 and
it is shown that with 300 nitrides, the prediction capacity is
adequately stable and almost reaches its limit. Therefore, a
sample set with a size of 300 should be large enough for a
machine learning model to learn in this work.

a. Band offset regressor

For band offset prediction, by using the 18-dimensional elemental
feature space, RMSEs of all models are shown in Table 2. Optimized
hyper-parameters are listed in Table S2 in the ESI.†

The smallest RMSE, 0.183 eV, suggests that SVR with radial
kernel is the best model for band offset prediction. In order to
intuitively show the accuracy of band offset prediction, pre-
dicted band offset values as a function of calculated band offset

in both the training and validation sets are plotted in Fig. 3.
The excellent prediction performance in both the training set
and the validation set indicates that the model is neither under-
fitting nor over-fitting.

b. Band gap regressor

For band gap prediction, the RMSEs of all optimized models
trained with the elemental 18-feature space are shown in Table 2.
Optimized hyper-parameters are listed in Table S2 in the ESI.†

SVR with radial kernel again performs best for band gap
prediction and came up with a RMSE of 0.298 eV. From a
perspective of first-principles calculations, the HSE calculated
band gap is sensitive to the exchange parameter with empiri-
cally selected values, which gives rise to a band gap calculation
uncertainty reaching up to 0.4 eV.24 Since the RMSE of 0.298 eV
is within the HSE calculation uncertainty, the model’s perfor-
mance is satisfactory. When the band gap of each nitride com-
pound calculated by the DFT-PBE method was added into the
18-dimensional feature space, a radial kernel-based SVR model

Fig. 2 (a) LOOCV RMSE of band gap prediction versus subset size (green curve). The red dashed curve is the fitting curve fitted by the power function
shown in red. (b) LOOCV RMSE of band offset prediction versus subset size (blue curve). The orange dashed curve is the fitting curve fitted by the power
function shown in orange.

Table 2 RMSE of band offset and band gap prediction for different
machine learning models. The RMSE values listed are the averaged RMSE
of the validation set in 10-fold cross validation

Linear
SVR

Poly
SVR

Radial
SVR

Linear
regression ANN DNN

Band offset
RMSE (eV)

0.256 0.239 0.183 0.256 0.219 0.230

Band gap
RMSE (eV)

0.412 0.335 0.298 0.474 0.385 0.379

Fig. 3 SVR predicted band offset versus calculated band offset. The blue
circles represent the training set, the gold triangles represent the validation
set and the red dashed line is the guidance line on which prediction error
is zero.
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was trained under the new 19-dimensional feature space and the
validation RMSE becomes as low as 0.099 eV. A performance
comparison of radial kernel SVR models with the 18-dimensional
and 19-dimensional feature space is shown in Fig. 4. The tremen-
dous accuracy enhancement by introducing the PBE band gap can
be explained by the approximately linear relationship between the
PBE band gap and the HSE band gap.30

As a trial to further improve the performance of SVR with
radial kernel for band gap prediction based on elemental pro-
perties, feature space expansion implemented by an elemental
property-based recursive feature extraction (EPRFE) algorithm
was conducted. In EPRFE, firstly, a larger feature space that
includes all accessible and reportedly-band-gap-related elemental
properties was built. After removing symmetrically repeating
features, a new 58-dimensional feature space was established
that includes eight elemental properties: covalent radius, electro-
negativity, valence, atomic number, periodic number, atomic
weight, first ionization energy and melting point. Secondly,
models were trained and tested with the feature space that is
the subset of the 58-dimensional space based on all possible
combinations of the eight elemental properties and the valida-
tion RMSEs of all 255 combinations were compared. The lowest
RMSEs with the corresponding number of properties selected
are shown in Fig. 5. Interestingly, it was found that the lowest
RMSE when three properties are selected corresponds to the
covalent radius, electronegativity and valence, exactly the three

properties in the original 18-dimensional elemental feature space.
RMSE can be further decreased slightly by around 0.005 eV when
the first ionization energies were introduced as new features,
which corresponds to the case of four properties selected in Fig. 5.
Besides, in Fig. 5, the lowest RMSE of one property corresponds to
electronegativity and the lowest RMSE of two properties corre-
sponds to electronegativity and covalent radius, which indicates

Fig. 4 (a) SVR predicted band gap versus HSE calculated band gap in 18-dimensional elemental property-based feature space. (b) SVR predicted band
gap versus HSE calculated band gap in 19-dimensional PBE band-gap-included feature space. (c) SVR band gap prediction error (the difference between
SVR predicted band gap and HSE calculated band gap) versus HSE calculated band gap in 18-dimensional elemental property-based feature space.
(d) SVR band gap prediction error versus HSE calculated band gap in 19-dimensional PBE-band-gap-included feature space. Blue circles represent the
training set and gold triangles represent the validation set.

Fig. 5 Lowest validation RMSEs in 10-fold cross validation with the
number of elemental properties selected.
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that the relative importance of each property for SVR-based
band gap prediction from high to low is electronegativity,
covalent radius, valence and first ionization energy. Other more
complex feature engineering methods such as different orders
of polynomial feature combinations with filtering method for
large-scale feature selection were tried, but no improvement
was observed in the model performance.

c. Predicted results

The band gap and band offset against wurtzite GaN of all 68 115
constructed nitrides were predicted by using radial SVR with
26-dimensional (original 18 features plus eight first ionization
energies) and the original 18-dimensional feature space, respectively.
The predicted band gaps and band offsets of all 68 115 nitrides

are listed in Table S4 in the ESI.† The predicted band gaps of
several nitrides that have been previously investigated are listed

Table 3 Comparison of predicted band gaps of previously explored
nitrides with reported and HSE values

Reported Eg (eV) Predicted Eg (eV) HSE calculated Eg (eV)

AlGaN2 4.6507 4.570 4.569
InGaN2 1.7957 2.272 1.925
AlInN2 2.8907 3.445 2.976
ZnGeN2 3.42031 3.405 3.406
ZnSnN2 2.02031 2.155 1.566
MgGeN2 5.14032 4.857 4.304
MgSiN2 5.84032 5.753 5.755
CaSiN2 4.50033 4.701 5.072

Table 4 Predicted band gaps of selected previously unexplored nitrides in
three domains of applications: infrared detectors, solar cell absorbers and
ultraviolet LEDs

Infrared
detector Eg (eV)

Solar cell
absorber Eg (eV) Ultraviolet LED Eg (eV)

BeBaSn2In4N8 0.016 CaSnGa2N4 1.226 BeMgSiTiN4 4.862
CdSnIn2N4 0.044 CdSiSn2N4 1.306 BeMg3Si2Ge2N8 4.964
CdSnGaInN4 0.345 BaCdSn2N4 1.341 Mg4GeTi3N8 5.008
SrSnIn2N4 0.371 SrCdSn2N4 1.368 Mg2SiGeN4 5.020
BaSnIn2N4 0.420 BaGeGa2N4 1.483 BeSiAl2N4 5.106
CdGeIn2N4 0.554 CdGeGa2N4 1.491 BeMgSi2N4 5.457
CaSnIn2N4 0.561 SrGeGa2N4 1.499 BeMg3Si2TiZrN8 5.020
ZnSnIn2N4 0.596 SrSnGaYN4 1.191 BeMg3Si2GeTiN8 5.056

Fig. 6 (a) Distribution of predicted band gaps of all designed nitrides. (b) Distribution of predicted band offset (against wurtzite GaN) of all designed
nitrides. The green and red dashed curve is the fitting curve fitted by Gaussian function. %x is the mean value of predicted results. m is the mean value of the
Gaussian fitting curves.

Fig. 7 Left: Distribution of predicted band gap of all designed nitrides with
1–8 types ((a1)–(a8)) of cations. Right: Distribution of predicted band offset
against wurtzite GaN of all designed nitrides with 1–8 types ((b1)–(b8)) of
cations. Middle: Mean and Gaussian mean of predicted band gaps and
band offsets versus the number of types of cations, horizontally matched
with left and right figures. Gaussian fittings for one type of cation were not
made due to small sample size.
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in Table 3 in a comparison with reported and HSE calculated
results. In Table 4, some previously unexplored nitrides are
listed with band gaps categorized into three application
domains: infrared detector, solar cell absorber and ultraviolet
LED. The overall distributions of predicted band gap and band
offset with Gaussian fitting curves are shown in Fig. 6. The
distributions of band gap and band offset by different numbers
of cation types with Gaussian fitting curves are shown in Fig. 7.
It was found that the designed nitrides exist in all valuable
band gap ranges and, pretty interestingly, as the number of
cation types increases, both the mean and Gaussian mean band
gap tend to decrease while both the mean and Gaussian mean
band offset tend to increase. Mean and Gaussian mean values
with the number of cation types are listed in Table S3 in
the ESI.† It is suggested that both theorists and experi-
mentalists can make further investigations on their nitrides
of interest included among the predicted results in this work.
Specifically, people can find their targeted materials by looking
for satisfactory band gaps in the band gap database pre-
dicted through the band gap regressor. When searching for
materials to make heterojunctions, targeted materials can be
found by screening both band gap and band offset data
generated by both regressors. Furthermore, when looking for
promising materials for specific device applications, various
device parameters need to be taken into consideration. If device
parameter regressors were built for targeted applications, such
as infrared detectors, solar cell absorbers and ultraviolet LEDs,
then combined with band gap and band offset regressors,
materials with potential for excellent device performance can
be found from a materials database based on the three sorts of
regressors.

Conclusions

In this work, machine learning models trained on first-principles
calculation results were utilized to successfully provide accurate
predictions for band gap and band alignment of nitrides in a
large design set. After model comparison, SVR with the radial
kernel function came up with the lowest RMSE of 0.183 eV for
band offset prediction and, through feature engineering, a RMSE
of 0.293 eV for band gap prediction. It was found that when
the DFT-PBE-calculated band gap was introduced into the
feature space, the band gap prediction RMSE could jump down
to 0.099 eV. Eventually, the band gap and band offset were
predicted on all of the 68 115 nitrides in the design space and
nitrides with useful band gaps and alignment were discovered.
The prediction results also indicate that the more types of
cations a nitride includes, the smaller the band gap and the
larger the band offset it tends to have. Along with the predicted
results, further investigations can be conducted on new nitride
semiconductor materials with desired applications.
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