河南省大数据研究院

Henan Academy of Big Data

-->
学术报告
学术报告——On essential spectra and essential numerical ranges of Hamiltonian systems

日期:2022-06-29   作者:田信宽   点击:

报告题目On essential spectra and essential numerical ranges of Hamiltonian systems

报告人:山东大学  孙华清 教授

报告时间:1830-2130, 1th July 2022.

报告地点:腾讯会议 (ID:404 451 812) 联系人:田信宽(Tel:18769092104)

Abstract

This talk is concerned with essential numerical ranges and essential spectra of Hamiltonian systems with one singular endpoint. For semi-bounded systems, the characterization of each element of the essential numerical range in terms of certain singular sequences is given, the concept of form perturbation small at the singular endpoint is introduced, and the stability of the essential numerical range is obtained under this perturbation, which shows that the stability of the infimum or supremum of the essential spectrum. Some sufficient conditions for the invariance of the essential numerical range are given in terms of coefficients of Hamiltonian systems.

简介:

孙华清,山东大学教授、博导,一直从事奇异微分与差分算子谱理论研究,在“J. Funct. Anal.”,“J. Differential Equations”,“Proc.Roy. Soc. Edinburgh Sect. A”,“Math. Nachr.”等国际权威杂志上发表27SCI收录的论文,先后主持国家自然科学基金3项,其它省部级项目多项。



上一条:学术报告——三维电子重构在材料研究中的应用

下一条:学术报告——Global dynamics and bifurcations of a class of planar piecewise linear differential systems

关闭

地址:郑州市二七区大学北路75号郑州大学南校区18号楼

版权所有:郑州大学    邮编450000