报告人:竺毅纯
单位:中国科学院数学与系统科学研究院
时间:2023年4月26日 10:00
报告地点:河南省大数据研究院五楼会议室/线上腾讯会议ID: 284864308
摘要: In this talk, we consider a class of slow-fast systems of stochastic partial differential equations where the nonlinearity in the slow equation is not continuous and unbounded. We first provide conditions that ensure the existence of a martingale solution. Then we prove that the laws of the slow motions are tight, and any of their limiting points is a martingale solution for a suitable averaged equation. Our results apply to systems of stochastic reaction-diffusion equations where the reaction term in the slow equation is only continuous and has polynomial growth.
个人简介:竺毅纯,博士毕业于马里兰大学,现在在中科院数学与系统科学研究院应用数学所做博后。主要研究兴趣包括Navier-Stokes 方程,随机流体,operation research等。目前已经在 journal of statistical physics 和 asymptotic analysis 等杂志上发表多篇学术论文。