姓名:
赵兴举
职称:直聘研究员
所属部门:物理学院、中原之光实验室
计算物理与量子能源材料设计课题组
学历:博士
专业:凝聚态物理
电话:+86 13718628667
电子邮件:zhaoxingju@zzu.edu.cn
一、工作经历与教育背景
2021.08-今 郑州大学物理学院、中原之光实验室,直聘研究员
2019.07-2021.07 北京师范大学物理学系,博士后
2017.06-2019.07 北京计算科学研究中心物理系统,博士后
2010.09-2017.06 郑州大学物理工程学院,凝聚态物理专业,硕博
2006.09-2010.06 郑州大学物理工程学院,理论物理专业,本科
二、研究方向(理论计算模拟方向)
1. 二维铁电材料的堆叠铁电性及其量子调控。铁电材料作为一种在外加电场作用下可以实现极化反转的功能性材料,其理论和应用研究在过去几十年中得到了蓬勃发展。近年来,电子元器件的微型化对铁电这一传统材料提出了新的要求:原子级厚度的铁电材料。然而传统铁电材料由于退极化效应的急剧增大(随着厚度的减小)而难以满足需求。最近在二维范德华 (van der Waals) 材料中发现的铁电有序,为铁电材料在原子尺度上的进一步拓展提供了广阔的应用前景。研究二维铁电材料的堆叠铁电性能够为其在微型芯片、光电探测、柔性可穿戴器件等领域的广泛应用提供重要的理论借鉴。
2. “魔角”双层二维材料的电子结构与物性调控。双层二维材料的堆积结构在两层之间产生一定角度的相对旋转,就打破了其亚晶格的对称性,形成两层之间堆积方式的超晶格——莫尔超胞。莫尔超胞的形成导致旋转双层体系层间相互作用势函数的周期性变化,在特定的旋转角度下,形成电子平带,如“魔角“石墨烯,并表现出一系列与强关联电子态相关的新奇的量子效应,如超导电性,Mott绝缘体行为等。对魔角双层二维材料的电子结构与物性进行量子调控,对于探究二维材料中强关联电子效应的深层次物理机制、及其在新一代功能型量子器件中的应用具有重要的科学意义。
3. 非均匀应变低维体系的模拟与物理。低维体系如0维的纳米团簇,1维的纳米线,2维的纳米薄膜是现代科学研究与科技开展不可替代的重要组成部分之一。低维体系包含着丰富的物理,同时,在低维体系下,纳米材料也往往更容易发生结构上的形变,而这些结构形变造成的效果要比宏观情况下更加明显。比如二维情况下的纳米泡,由应力引起的赝磁场可以达到300个特斯拉,这在宏观情况下是完全无法想象的。另外比如挠曲电效应,在低维体系下也变得特别明显。同时现代科技的发展也对柔性电子材料提出了更高的要求,比如柔性电池,柔性芯片等等,而在低维体系下材料结构的形变又往往对材料的性质起着决定性的作用,因此对非均匀应变体系的模拟与研究就显得迫切而必要。
三、基金与奖励
1. 主持国家自然科学青年基金一项:双层“非魔角”旋转二维材料能带与物性的量子调控研究,30万元,项目编号: 12204421,起止时间:2023.01-2025.12.
2. 主持博士后创新人才支持计划项目一项:半导体薄膜与衬底相互作用下电子结构的原子级计算,60 万元,20172019.
3. 主持郑州大学青年人才创新团队支持计划项目一项,30万元,2022-2025.
4. 参与国家自然科学基金面上项目(李顺方)一项:调控金属衬底电子相互作用在优化单原子催化剂效率中应用的第一性原理计算研究,59万元,2017-2020.
5. 参与河南省创新人才队伍建设工程基金(李顺方)一项:催化剂自旋调控在汽车尾气CO、CH化合物催化氧化中应用的第一性原理计算研究,30万元,2013-2016.
6. 获得河南省科学技术奖二等奖一项:新型能源材料的计算设计,第五名。
四、五篇代表性论文
[1] Xigui Yang#, Jinhao Zang#, Xingju Zhao#, Xiaoyan Ren, Shuailing Ma, Zhuangfei Zhang, Yuewen Zhang, Xing Li, Shaobo Cheng, Shunfang Li, Bingbing Liu, and Chongxin Shan, Centimeter-sized diamond composites with high electrical conductivity and hardness, Proc. Nat. Acad. Sci. 121, e2316580121 (2024), 共同一作.
[2] Xing-Ju Zhao, Yang Yang, Dong-Bo Zhang, and Su-Huai Wei, Formation of bloch flat bands in polar twisted bilayers without magic angles, Phys. Rev. Lett. 124, 086401 (2020).
[3] Qian Wang, Kun Liu, Xinlian Xue, Lili Zhang, Rui Pang, Xiaoyan Ren, Xingju Zhao*, and Shunfang Li*, Negative differential friction predicted in two-dimensional electride commensurate contacts: Role of the electronic structure, Phys. Rev. B 109, 085420 (2024).
[4] Xing-Ju Zhao, Gotthard Seifert, Junyi Zhu, and Dong-Bo Zhang, Twist-induced preferential distribution of dopants in single-crystalline Si nanowires, Phys. Rev. B 100, 174202 (2019).
[5] Xing-Ju Zhao, Yang Yang, Dong-Bo Zhang, and Su-Huai Wei, Flat bands in twisted bilayers of polar two-dimensional semiconductors, Phys. Rev. Materials 5, 014007 (2021).
五、其他论文
[23] Bojie Jiang, Feixiang Zhang, Yueyang Wang, Xinlian Xue, Jinlei Shi, Xingju Zhao, Lili Zhang, Rui Pang, Xiaoyan Ren, Shunfang Li, and Zhenyu Zhang, Dynamically confined single-atom catalytic sites within a porous heterobilayer for CO oxidation via electronic an- tenna effects, Phys. Rev. B 107, 205421 (2023).
[22] Jinting Wang, Yandi Zhu, Kun Liu, Lili Zhang, Rui Pang, Xiaoyan Ren, Chongxin Shan, Xingju Zhao*, and Shunfang Li*, Hydrogen-assisted growth of single crystalline borophene investigated by first-principles calculations, J. Mater. Chem. A 11, 19138 (2023).
[21] Jiangtao Cheng, Kun Liu, Xingju Zhao, Xinlian Xue, Lili Zhang, Rui Pang, Xiaoyan Ren, and Shunfang Li, Negative-positive oscillation in interfacial friction of a In2Se3-graphene heterojunction, Phys. Rev. B 106, 195416 (2022).
[20] Kun Liu, Jiangtao Cheng, Xingju Zhao, Yandi Zhu, Xiaoyan Ren, Jinlei Shi, Zhengxiao Guo, Chongxin Shan, Hongjie Liu, and Shunfang Li, Negative differential friction coefficients of two-dimensional commensurate contacts dominated by electronic phase transition, Nano Res. 15, 5758 (2022).
[19] Yanyu Yin, Xingju Zhao, Xiaoyan Ren, Kun Liu, Jin Zhao, Lili Zhang, and Shunfang Li, Thickness dependent ultrafast charge transfer in bp/mos2 heterostructure, Adv. Funct. Mater. 32, 2206952 (2022).
[18] Yueyang Wang, Xiaoyan Ren, Bojie Jiang, Meng Deng, Xingju Zhao, Rui Pang, and S. F. Li, Synergetic catalysis of magnetic single-atom catalysts confined in Graphitic- C3N4/CeO2(111) heterojunction for CO oxidization, J. Phys. Chem. Lett. 13, 6367 (2022).
[17] Jingge Sun, Lili Zhang, Rui Pang, Xing-Ju Zhao, Jiangtao Cheng, Yimin Zhang, Xinlian Xue, Xiaoyan Ren, Wenguang Zhu, Shunfang Li, and Zhenyu Zhang, Negative differential friction predicted in 2d ferroelectric in2se3 commensurate contacts, Adv. Sci. 9, 2103443 (2022).
[16] Mengru Ren, Lili Zhang, Yandi Zhu, Jinlei Shi, Xingju Zhao, Xiaoyan Ren, and Shunfang Li, Highly efficient catalytic properties of Sc and Fe single atoms stabilized on a honey- comb borophene/Al(111) heterostructure via a dual charge transfer effect, Nanoscale 13, 5875 (2021).
[15] Jin-Lei Shi, Yunhua Wang, Xing-Ju Zhao, Yu-Zhong Zhang, Shengjun Yuan, Su-Huai Wei, and Dong-Bo Zhang, Strain induced spin-splitting and half-metallicity in antiferromagnetic bilayer silicene under bending, Phys. Chem. Chem. Phys. 22, 11567 (2020).
[14] Jin-Lei Shi, Xing-Ju Zhao, Gotthard Seifert, Su-Huai Wei, and Dong-Bo Zhang, Unconven- tional deformation potential and half-metallicity in zigzag nanoribbons of 2d-xenes, Phys. Chem. Chem. Phys. 22, 7294 (2020).
[13] Hai-Sheng Li*, Donghui Wei, Xingju Zhao*, Xiaoyan Ren, Dawei Zh ang, and Weiwei Ju, Thermal stability of Ag−13 clusters studied by ab initio molecular dynamics simulations, J. Phys. Chem. A 124, 4325 (2020).
[12] Dong-Bo Zhang, Xing-Ju Zhao, Gotthard Seifert, Kinfai Tse, and Junyi Zhu, Twist-driven separation of p-type and n-type dopants in single-crystalline nanowires, Natl. Sci. Rev. 6, 532 (2019).
[11] Ke Zhao, Yandi Zhu, Jinlei Shi, Xingju Zhao, Rui Pang, Xinlian Xue, Xiaoyan Ren, Xiangmei Duan, Z. X. Guo, and Shunfang Li, Synergetic effects of strain engineering and substrate defects on generating highly efficient single-atom catalysts for CO oxidation, J. Mater. Chem. A 7, 9297 (2019).
[10] Yandi Zhu, Ke Zhao, Jinlei Shi, Xiaoyan Ren, Xingju Zhao, Yuan Shang, Xinlian Xue, Haizhong Guo, Xiangmei Duan, Hao He, Zhengxiao Guo, and Shunfang Li, Strain engineer- ing of a defect-free, single-layer MoS2 substrate for highly efficient single-atom catalysis of CO oxidation, ACS Appl. Mater. Interfaces 11, 32887 (2019).
[9] Haisheng Li, Xingju Zhao, Donghui Wei, Liben Li, and Shunfang Li, Unexpected odd-even oscillation in the enhanced chemical activities of the Run (n=2-14) nanoclusters for H2O splitting, J. Phys. Chem. C 121, 7188 (2017).
[8] J. L. Shi, X. J. Zhao, L. Y. Zhang, X. L. Xue, Z. X. Guo, Y. F. Gao, and S. F. Li, An oxidized magnetic au single atom on doped TiO2(110) becomes a high performance CO oxidation catalyst due to the charge effect, J. Mater. Chem. A 5, 19316 (2017).
[7] X. J. Zhao, Wen-Wen Shan, Hao He, Xinlian Xue, Z. X. Guo, and S. F. Li, From single atoms to self-assembled quantum single-atomic nanowires: noble metal atoms on black phospho- rene monolayers, Phys. Chem. Chem. Phys. 19, 7864 (2017).
[6] Shunfang Li, Xingju Zhao, Jinlei Shi, Yu Jia, Zhengxiao Guo, Jun-Hyung Cho, Yanfei Gao, and Zhenyu Zhang, Interplay between the spin-selection rule and frontier orbital theory in O2 activation and CO oxidation by single-atom-sized catalysts on TiO2(110), Phys. Chem. Chem. Phys. 18, 24872 (2016).
[5] X. J. Zhao, X. L. Xue, Z. X. Guo, and S. F. Li, Relative edge energy in the stability of transition metal nanoclusters of different motifs, Nanoscale 8, 12834 (2016).
[4] J. L. Shi, J. H. Wu, X. J. Zhao, X. L. Xue, Y. F. Gao, Z. X. Guo, and S. F. Li, Substrate co-doping modulates electronic metal-support interactions and significantly enhances single- atom catalysis, Nanoscale 8, 19256 (2016).
[3] Liying Zhang, Xingju Zhao, Xinlian Xue, Jinlei Shi, Chong Li, Xiaoyan Ren, Chunyao Niu, Yu Jia, Zhengxiao Guo, and Shunfang Li, Sub-surface alloying largely influences graphene nucleation and growth over transition metal substrates, Phys. Chem. Chem. Phys. 17, 30270 (2015).
[2] X. J. Zhao, X. L. Xue, Z. X. Guo, Yu Jia, S. F. Li, Zhenyu Zhang, and Y. F. Gao, Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding, J. Chem. Phys. 143, 174302 (2015).
[1] S. F. Li, X. J. Zhao, X. S. Xu, Y. F. Gao, and Zhenyu Zhang, Stacking principle and magic sizes of transition metal nanoclusters based on generalized wulff construction, Phys. Rev. Lett. 111, 115501 (2013).