李顺方 教授

作者: 时间:2022-01-03

  名:李顺方

  别:

所属部门:物理学院(微电子学院)

凝聚态计算与理论物理研究所 

学  历:博士

所学专业:凝聚态物理

    话:13526700835

电子邮件:sflizzu@zzu.edu.cn 

研究方向:低维功能型材料生长机理、电子结构、物性量子调控的多尺度模拟计算

个人简介

工作经历

2019.08-今,郑州大学物理学院(微电子学院)副院长(负责学科建设和对外交流)

2018.03-今,郑州大学物理学科特聘教授。

2012.06-2018.03,郑州大学, 物理工程学院物理系,教授, 硕、博士生导师;

2010.04-2012.06,美国田纳西大学, 物理&材料系&橡树岭国家实验室, 博士后研究;

2007.06-2008.09,英国伦敦大学大学学院,化学系,博士后研究;

2006.06-2007.06,郑州大学,物理工程学院物理系,副教授;

2006.03-2006.06,美国哈佛大学,物理系,访问学者;

2004.04-2006.03,郑州大学,物理工程学院物理系,讲师;

 

教育背景

 

1999.9-2004.7 中国科学院固体物理研究所 硕、博连读 

1995.9-1999.7 河南师范大学物理系,本科

学术任职:

2021.06-      河南省首席科普专家

2016.07-      中国材料学会计算材料分会委员

2018.06-2019.09 郑州大学物理工程学院教授委员会主任

2019.09-      郑州大学物理工程学院教授委员会副主任

学术成果:

 2008年河南省教育厅学术技术带头人, 2009年河南省青年骨干教师培养对象,2013年河南省科技创新人才杰出青年基金获得者,河南省科技创新团队科研骨干。主持在研国家自然科学基金面上项目1项、主持完成国家自然科学基金2项,作为主要参与人参与完成国家自然科学基金2项。在包括Phys. Rev. Lett., Nano Letter., Phys. Rev. B, JACS, Adv. Sci., J. Chem. Phys., J. Mater. Chem. A等国际主流杂志上发表SCI论文70多篇。

科研方向

[1] 高效、经济、多功能型纳米催化剂设计中的物理问题。感兴趣的领域主要涵盖氧分子(O2)参与的众多物理化学现象,并且在催化反应过程中,O2在催化剂的作用下如何被高效地激发和活化,氧分子和催化剂之间的自旋相互作用。该过程是众多化学反应能够低碳顺利进行的关键环节,比如汽车尾气主要成分CO有毒气体的催化氧化。与此相应,设计高效经济的催化剂及其调控原理是值得深入研究的课题。该领域,申请人目前完成河南省优秀人才支持计划(杰出青年基金)一项;主持郑州大学优秀青年教师发展基金一项(30万元),主持郑州大学物理学科振兴计划重点项目(150万元)一项。

[2] 纳米尺度下的摩擦学。摩擦现象是一个非常古老的问题,也是一个无论在日常生活还是众多科研领域(比如:输运和催化)中都会面临的问题,特别是随着纳米技术的发展,在纳米尺度,摩擦现象的新规律、能量耗散新机制及其调控是一个非常重要的问题。我们采取多尺度模拟方法,研究在纳米尺度下材料界面摩擦的新规律,新机制及其调控方法。

 

[3] 低维材料生长机制、电子结构、物性和应用的第一性原理计算研究。当今世界,凝聚态物理研究的前沿热点领域和最值得关注的研究方向之一是低维材料中的新奇物理现象及其应用。由于尺寸效应,在纳米、亚纳米甚至是原子级别尺寸的材料表现出众多奇特的量子现象,很多宏观物理现象和物理规律在此尺寸范围都可能面临重新定义、思考、和表述。研究目标:采用基于量子力学的基本原理和现代第一性原理计算方法,研究微观世界中丰富的新物理现象和预言其潜在应用。目前,该方向,主持国家自然科学基金面上项目一项 70万元)。

 

科研项目、获奖等情况

科研项目

[1]软包锂离子电池铝塑膜用铝合金制备关键技术开发郑州市创新创业团队项目,1500万(政府资助300万,企业资助1200万),2022-2024年。

[2] 磁性单原子催化剂自旋协同效应催化氧化CO的多尺度模拟计算研究”, 国家自然科学基金面上项目,项目批准号:12074345;起止年限:2021.01 - 2024.12;直接经费:62万,主持。 

[3]调控金属-衬底电子相互作用在优化单原子催化剂效率中应用的第一性原理计算研究”, 国家自然科学基金面上项目,项目批准号: 11674289;起止年限:2017.1-2020.12,直接经费:59万; 主持。

[4]合金尺寸效应双重调控下高效二氧化碳催化剂的第一性原理计算研究,国家自然科学基金面上项目,项目批准号: 11074223;起止年限:2010.1-2013.12,资助金额:38万;

[5]用团簇组装一维(磁性)纳米线的理论计算研究,国家自然科学基金青年项目,项目批准号:10604049;起止年限:2007.1-2009.12, 资助金额:28万;

[6]新型高效单原子催化剂瓶颈问题的多尺度模拟计算研究”, 郑州大学物理学科振兴计划重点项目,起止年限:  2017.12-2021.12, 资助金额:150万;

[7]催化剂自旋调控在汽车尾气COCH化合物催化氧化中应用的第一性原理研究,河南省科技创新人才计划(杰出青年基金),起止年限:2013.1-2015.12;资助金额:30万;

[8]拓扑绝缘体表面奇异摩擦特性的第一性原理计算研究,河南省国际科技合作计划,起止年限:2014.1-2016.12;资助金额:10万;

[9]单原子尺度高效催化剂设计和第一性原理计算模拟研究,郑州大学优秀青年教师发展基金,起止年限:2014.1-2016.12,资助金额:30万。

[10]金刚石表面金属薄膜生长过程的动力学研究,国家自然科学基金(10574113),起止年限:2006.1-2008.12,资助金额:26万;参与人,第三名。

[11] 等离激元硅薄膜太阳电池宽光谱陷光特性研究(11204276)”,国家自然科学基金,起止年限,2013.1-2015.12,资助金额25万,参与人,第二名。

[12]教育部创新团队-低维量子物理与量子功能材料教育部创新团队项目,滚动资助,350万元。参与,科研骨干。

科研获奖

[1] 新能源材料的计算设计2020年度河南省自然科学奖贰等奖,第一名。

[2] 薄膜生长过程结构演化和量子生长机理2015年度河南省科学技术进步奖贰等奖,第三名。

[3]薄膜材料生长过程机制与量子调控2013年度河南省教育厅科技成果奖壹等奖,第五名。

l  教学项目和奖励:

[1] 赛学育人---14载卓越拔尖人才遴选培育的探索与实践”,河南省高等教育教学成果奖壹等奖,第五名。

[2]面向中原之光平台建设的本科生实验教学改革探索与实践”, 郑州大学 2021 年度校级教育教学改革研究与实践中重点项目,2021-2022年,主持。

[3]“MATLAB与建模课程思政教学团队”, 2021年本科高校课程思政教学团队立项,省级,第四名。

 

发表代表性学术论文

 

[70] “Negative-positive oscillation in interfacial friction of a In2 Se3 -graphene heterojunction”Jiangtao Cheng, Kun Liu, Xingju Zhao, Xinlian Xue,* Lili Zhang, Rui Pang, Xiaoyan Ren,† and Shunfang Li ‡Phys. Rev. B 106, 195416 (2022)

DOI: https://doi.org/10.1103/PhysRevB.106.195416

 

[69] “Synergetic Catalysis of Magnetic Single-Atom Catalysts Confined in Graphitic-C3N4/CeO2(111) Heterojunction for CO Oxidization” Yueyang Wang, Xiaoyan Ren,* Bojie Jiang,  Meng Deng, Xingju Zhao, Rui Pang, and S. F. Li*, J. Phys. Chem. Lett. 13, 6367−6375 (2022)

DOI: https://pubs.acs.org/doi/10.1021/acs.jpclett.2c01605?ref=PDF

 

[68] “Edge-state-induced magnetism in two-dimensional hematene”, Junjie Shi, Weiwei Ren, Xiaoyan Ren, Yuanyuan Shang, Rui Pang* and Shunfang Li*, J. Mater. Chem. A 10 (34), 17766-17772 (2022)

DOI: https://doi.org/10.1039/d2ta05056k

 

[67] “Electrocatalytic activity of a beta-Sb two-dimensional surface for the hydrogen evolution reaction”, Mengya Yang, Xiaoyan Ren, Shunfang Li, Yingjiu Zhang, Xinjian Li, Rui Pang* and Yuanyuan Shang*, Phys. Chem. Chem. Phys. 24 (29), 17832-17840 (2022)

DOI: https://doi.org/10.1039/d2cp01095j

 

[66] “Mixed-Dimensional Pt-Ni Alloy Polyhedral Nanochains As Bifunctional Electrocatalysts for Direct Methanol Fuel Cell”, Tianyu Xia, Kai Zhao, Youqi Zhu, Xiaoyan Bai, Han Gao, Ziyu Wang*, Yue Gong, Menglin Feng, Shunfang Li, Qiang Zheng, Shouguo Wang, Rongming Wang and Haizhong Guo*, Adv. Mater., e2206508-e2206508 (2022)

DOI: https://doi.org/10.1002/adma.202206508

 

[65] “Negative differential friction coefficients of two-dimensional commensurate contacts dominated by electronic phase transition”, Kun Liu, Jiangtao Cheng, Xingju Zhao, Yandi Zhu, Xiaoyan Ren, Jinlei Shi, Zhengxiao Guo, Chongxin Shan*, Hongjie Liu* and Shunfang Li*, Nano Research 15 (6), 5758-5766 (2022)

DOI: https://doi.org/10.1007/s12274-022-4316-4

 

[64] “Synergetic catalysis of p-d hybridized single-atom catalysts: first-principles investigations”, Meng Deng, Mengjiao Xia, Yueyang Wang, Xiaoyan Ren* and Shunfang Li*, J. Mater. Chem. A 10 (24), 13066-13073 (2022)

DOI: https://doi.org/10.1039/d2ta03368b

 

[63] “Thickness Dependent Ultrafast Charge Transfer in BP/MoS2 Heterostructure”, Yanyu Yin, Xingju Zhao, Xiaoyan Ren, Kun Liu, Jin Zhao, Lili Zhang* and Shunfang Li*, Adv. Funct. Mater. 32 (45), (2022)

DOI: https://doi.org/10.1002/adfm.202206952

 

[62] “Universal triquinoxalinylene (3Q) molecule electrodes for ultrafast and ultrastable Li+ storage”, Gan Qu, Rui Pang, Kai Guo, Tengfei Kong, Shunfang Li, Jinping Liu* and Jianan Zhang*, Eenergy Storage Materials 46, 322-328 (2022)

DOI: https://doi.org/10.1016/j.ensm.2022.01.008

 

[61] “Synergetic Charge Transfer and Spin Selection in CO Oxidation at Neighboring Magnetic Single-Atom Catalyst Sites”, Liying Zhang, Xiaoyan Ren, Xingju Zhao, Yandi Zhu, Rui Pang, Ping Cui, Yu Jia, Shunfang Li,* and Zhenyu Zhang*, Nano Letters 22, 3744−3750 (2022)

DOI: https://doi.org/10.1021/acs.nanolett.2c00711

 

[60] “Plasmon-mediated CO2 Photoreduction via Indirect Charge Transfer on Small Silver Nanoclusters”, Yimin Zhang, Daqiang Chen, Zhe Xu, Haizhong Guo, Shunfang Li*, Sheng Meng*, J. Phys. Chem. C, 125, 26348 (2021)

DOI: https://doi.org/10.1002/advs.202102978

 

[59] “Plasmon-Mediated Photodecomposition of NH3 via Intramolecular Charge Transfer”Yimin Zhang, Weite Meng, Daqiang Chen, Lili Zhang, Shunfang Li*, Sheng Meng*Nano Research  12274 (2021)

DOI: https://doi.org/10.1007/s12274-021-4021-8

 

[58] “Indirect to Direct Charge Transfer Transition in Plasmon-Enabled CO2 Photoreduction” Yimin Zhang, Lei Yan, Mengxue Guan, Daqiang Chen, Zhe Xu, Haizhong Guo,* Shiqi Hu, Shengjie Zhang, Xinbao Liu, Zhengxiao Guo,* Shunfang Li,* and Sheng Meng* Adv. Sci. 2102978 (2021)

DOI: https://doi.org/10.1002/advs.202102978

 

[57] “Negative Differential Friction Predicted in 2D Ferroelectric In2Se3 Commensurate Contacts”, Jingge Sun, Lili Zhang, Rui Pang, Xing-Ju Zhao, Jiangtao Cheng, Yimin Zhang, Xinlian Xue, Xiaoyan Ren,* Wenguang Zhu,* Shunfang Li,* and Zhenyu Zhang Adv. Sci. 2103443 (2021)

DOI: https://doi.org/10.1002/advs.202103443

 

[56] “Bandgap engineering of Gallium oxides by crystalline disorder”, Yancheng Chen, Yingjie Lu, Xun Yang*, Shunfang Li*, Kaiyong Li, Xuexia Chen, Zhiyang Xu, Jinhao Zang, Chongxin Shan*, Materials Today Physics 18, 100369 (2021)

DOI: https://doi.org/10.1016/j.mtphys.2021.100369

 

[55] “Highly efficient catalytic properties of Sc and Fe single atoms stabilized on a honeycomb borophene/Al(111) heterostructure via a dual charge transfer effect”, Mengru Ren, Lili Zhang, Yandi Zhu, Jinlei Shi, Xingju Zhao, Xiaoyan Ren* and Shunfang Li, Nanoscale, 13, 5875 2021

DOI: https://doi.org/10.1039/D0NR08065A

 

[54] “Plasmon-Induced Water Splitting on Ag-Alloyed Pt Single-Atom Catalysts” Yimin Zhang, Daqiang Chen, Weite Meng, Shunfang Li* and Sheng Meng*, Frontiers in Chemistry 9, 742794 (2021)

DOI: https://doi.org/10.3389/fchem.2021.742794

 

[53] “Atomically dispersed Ni induced by ultrahigh N-doped carbon enables stable sodium Storage” Keming Song, Jiefei Liu, Hongliu Dai, Yong Zhao, Shuhui Sun, Jiyu Zhang, Changdong Qin, Pengfei Yan, Fengqi Guo, Caiyun Wang, Yuliang Cao, Shunfang Li, and Weihua Chen*Chem 7, 1–11 (2021)

DOI: https://doi.org/10.1016/j.chempr.2021.06.008

 

[52] “Modulating reaction pathways of formic acid oxidation for optimized electrocatalytic performance of PtAu/CoNC”, Mengchao Liang, Tianyu Xia,* Han Gao, Kai Zhao, Tianqi Cao, Meng Deng, Xiaoyan Ren, Shunfang Li, Haizhong Guo*, and Rongming Wang*, Nano Research, 12274 (2021)

DOI: https://doi.org/10.1007/s12274-021-3629-z

 

[51] “Pressure-Induced Structural Evolution and Bandgap Optimization of Lead-Free Halide Double Perovskite (NH4)2SeBr6”  Lingrui Wang; Panpan Yao, Fei Wang; Shunfang Li, Yaping Chen, Tianyu Xia, Erjia Guo, EJ, Kai Wang, Bo Zou, Haizhong Guo, Adv. Sci. 1902900 (2020)

DOI: https://doi.org/10.1002/advs.201902900

 

[50] “Distribution and concentration of surface oxygen vacancy of TiO2 and its photocatalytic activity”,  Tianqi Cao, Tianyu Xia, Liang Zhou, Guoqiang Li, Xing Chen, He Tian, Jiali Zhao, Jia-ou Wang, Weifeng Zhang, Shunfang Li, Sheng Meng and Haizhong Guo J. Phys. D: Appl. Phys. 53 424001(2020)

DOI: https://doi.org/10.1088/1361-6463/ab9d99

 

[49]“Morphology/phase-dependent MoS2 nanostructures for high-efficiency electro chemical activity” Liang Zhou, Tianyu Xia, Tiangqi Cao, Lingrui Wang, Yongsheng Chen, Shunfang Li, Rongming Wang, Haizhong Guo,  J. Alloys. And. Compounds 818, 152909 (2020)

DOI: https://doi.org/10.1016/j.jallcom.2019.152909

 

[48] “Phase transition of nanoscale Au atom chains on NiAl(110)”Bei-bei Yi, Rui Pang, Xiaoyan Ren, Haizhong Guo, Yuan Shang, Xiangmei Duan,Jun-Hyung Cho*, Shunfang Li* Physics Letters A 384,126183 (2020)

DOI: https://doi.org/10.1016/j.physleta.2019.126183

 

[47] “Strain Engineering of a Defect-Free, Single-Layer MoS2 Substrate for Highly Efficient Single-Atom Catalysis of CO Oxidation” Yandi Zhu, Ke Zhao, Jinlei Shi, Xiaoyan Ren, Xingju Zhao, Yuan Shang, Xinlian Xue, Haizhong Guo, Xiangmei Duan, Hao He,* Zhengxiao Guo, and Shunfang Li* ACS Appl. Mater & Interfaces 11, 32887−32894 (2019)

DOI: https://doi.org/10.1021/acsami.9b06435

 

[46]“Electronic structure evolutions driven by oxygen vacancy in SrCoO3−x films” Jiali Zhao, Yi Luo, Jia-Ou Wang, Haijie Qian, Chen Liu, Xu He, Qinghua Zhang, Heyi Huang, Bingbing Zhang, Shunfang Li, Erjia Guo, Chen Ge, Tieying Yang, Xiaolong Li, Meng He, Lin Gu, Kui-Juan Jin, Kurash Ibrahim, and Haizhong Guo, Sci China Mater 621162–1168 2019

DOI: https://doi.org/10.1007/s40843-019-9410-2

 

[45] “Porphyrinic Silver Cluster Assembled Material for Simultaneous Capture and Photocatalysis of Mustard-Gas Simulant” Man Cao, Rui Pang, Qian-You Wang,* Zhen Han, Zhao-Yang Wang, Xi-Yan Dong, Shun-Fang Li, Shuang-Quan Zang,* and Thomas C. W. Mak. J. Am. Chem. Soc. 141, 14505−14509 (2019)

DOI: https://doi.org/10.1021/jacs.9b05952

 

[44] “Crystallographic-orientation dependent Li ion migration and reactions in layered MoSe2” Xing Li, Mei Sun, Shaobo Cheng, Xiaoyan Ren, Jinhao Zang, Tingting Xu, Xianlong Wei, Shunfang Li, Qing Chen, and Chongxin Shan, 2D Mater. 6, 035027 (2019)

DOI: https://doi.org/10.1088/978-0-7503-2727-5

 

[43] “Synergetic effects of strain engineering and substrate defects on generating highly efficient single-atom catalysts for CO oxidation”, Ke Zhao, Yandi Zhu, Jinlei Shi, Xingju Zhao, Rui Pang, Xinlian Xue, Xiaoyan Ren,* Xiangmei Duan, Z. X. Guo, and Shunfang Li*, J. Mater. Chem. A, 7, 9297 (2019)

DOI: https://doi.org/10.1039/C9TA01326A

 

[42] “Kinetic pathways towards mass production of single crystalline stanene on topological insulator substrates”, Liying Zhang, Wei Qin, Leiqiang Li, Shunfang Li,* Ping Cui,* Yu Jiaand Zhenyu Zhang, Nanoscale, 10, 18988 (2018)

DOI: https://doi.org/10.1039/C8NR05815F

 

[41] Xiao-Yan Ren, Chun-Yao Niu, Seho Yi, Shunfang Li, and Jun-Hyung Cho, Hydrogen adsorption induced nanomagnetism at the Si(111)-(7×7) surface. Phys. Rev. B 98, 195424 (2018)

DOI: https://doi.org/10.1103/PhysRevB.98.195424

 

[40] “Tuning electronic and magnetic properties of Mn-mullite oxide sub-nanoclusters via MnOn polyhedron units”, Hui Li, Kyeongjae Cho Shunfang Li* and Weichao Wang*, Phys. Chem. Chem. Phys. 20, 16151 (2018).

DOI: https://doi.org/10.1039/c8cp01910j

 

[39] “A potential material for hydrogen storage: a Li decorated graphitic-CN monolayer”, Yong-Dao Chen, Song Yu, Wen-Hui Zhao, Shun-Fang Li, and Xiang-Mei Duan*, Phys. Chem. Chem. Phys. 20, 13473-13477 (2018)

DOI: https://doi.org/10.1039/c8cp01145a

 

[38] “A powerful Li-O2 battery based on an efficient hollow Cu2O cathode catalyst with tailored crystal plane”, Shiyu Ma, Qingchao Liu, Dongling Lei, Xiaoqing Guo, Shunfang Li, Zhongjun Li, Electrochimica Acta 260, 31-39 (2018)

DOI: https://doi.org/10.1016/j.electacta.2017.11.065

 

[37] “Net W monolayer: A high-performance electrode material for Li-ion batteries”, Song Yu, Yong-Chao Rao, Shun-Fang Li, and Xiang-Mei Duan*, Appl. Phys. Lett. 112, 053903 (2018)

DOI: https://doi.org/10.1063/1.5013617

 

[36] “Modulation of electronic and magnetic properties of edge hydrogenated armchair phosphorene nanoribbons by transition metal adsorption”, Yong-Chao Rao, Peng Zhang, Shun-Fang Li, Xiang-Mei Duan *and Su-Huai Wei, Phys. Chem. Chem. Phys. 20,12916(2018)

DOI: https://doi.org/10.1039/C8CP00880A

 

[35] “An Oxidized Magnetic Au Single Atom on Doped TiO2(110) Becomes a High Performance CO Oxidation Catalyst due to Charge Effect”, J. L. Shi, X. J. Zhao, L. Y. Zhang, X. L. Xue, Z. X. Guo,Y. F. Gao, and S. F. Li*, J. Mater. Chem. A 5, 19316 (2017)

DOI: https://doi.org/10.1039/C7TA05483A

 

[34] “From single atoms to self-assembled quantum single-atomic nanowires: noble metal atoms on black phosphorene monolayers”, X. J. Zhao, Wen-Wen Shan, Hao He, Xinlian Xue, Z. X. Guo, and S. F. Li*, Phys. Chem. Chem. Phys. 19, 7864 (2017)

DOI: https://doi.org/10.1039/C6CP08230K

 

[33] “Unexpected Odd−Even Oscillation in the Enhanced Chemical Activities of the Run (n=2−14) Nanoclusters for H2O Splitting”, Haisheng Li, Xingju Zhao, Donghui Wei, Liben Li, and Shunfang Li*, J. Phys. Chem. C 121, 7188 (2017)

DOI: https://doi.org/10.1021/acs.jpcc.6b07047

 

[32] “Wavelength-Tunable Ultraviolet Electroluminescence from Ga-Doped ZnO Microwires”, Yang Liu, Mingming Jiang*, Gaohang He, Shunfang Li, Zhenzhong Zhang, Binghui Li, Haifeng Zhao, Chongxin Shan*, and Dezhen Shen*, ACS Appl. Mater. Inter. 9, 40743 (2017)

DOI: https://doi.org/10.1021/acsami.7b14084

 

[31]Relative edge energy in the stability of transition metal nanoclusters of different motifs”, Xingju Zhao, Xinlian Xue, Zhengxiao Guo and Shunfang Li*, Nanoscale 8, 12834 (2016)

DOI: https://doi.org/10.1039/C6NR00486E

 

[30] “Substrate co-doping modulates electronic metal–support interactions and significantly enhances single-atom catalysis”, J. L. Shi, J. H. Wu, X. J. Zhao, X. L. Xue, Y. F. Gao, Z. X. Guo* and S. F. Li*, Nanoscale, 8, 19256 (2016) (被选为封面文章)

DOI: https://doi.org/10.1039/C6NR04292A

 

[29] “Interplay between the spin-selection rule and frontier orbital theory in O2 activation and CO oxidation by single-atom-sized catalysts on TiO2(110)”, Shunfang Li, Xingju Zhao, Jinlei Shi,Yu Ji, Zhengxiao Guo, Jun-Hyung Cho,* Yanfei Gao,and Zhenyu Zhang*, Phys. Chem. Chem. Phys. 18, 24872 (2016) (被选为封面文章)

DOI: https://doi.org/10.1039/C6CP03168D

 

[28] “Intriguing Structures and Magic Sizes of Heavy Noble Metal Nanoclusters around Size 55 governed by Relativistic Effect and Covalent Bonding” X. J. Zhao, XinlianXue, Q. Sun, Yu Jia, and S. F. Li,* J. Chem. Phys. 143, 174302 (2015)

DOI: https://doi.org/10.1063/1.4934798

 

[27] “Sub-surface alloying largely influences graphene nucleation and growth over transition metal substrates” Liying Zhang, Xingju Zhao, Xinlian Xue, Jinlei Shi, Chong Li, Xiaoyan Ren, Chunyao Niu, Yu Jia, Zhengxiao Guo, and Shunfang Li*, Phys. Chem. Chem. Phys 1730270 2015 (IF=4.493) (被选为PCCPoutside back cover image封面文章)

DOI: https://doi.org/10.1039/C5CP03820K

 

[26] “Catalytic activities of noble metal atoms on WO3(001): nitric oxide adsorption” Xiaoyan Ren, Shuai Zhang, Chong Li, Shunfang Li, Yu Jia, and Jun-Hyung Cho, Nanoscale Research Letters 10, 60 (2015) 

DOI: https://doi.org/10.1186/s11671-014-0713-2

 

[25] “Intrinsic spin dependent and ferromagnetic stability on edge saturated zigzag graphene-like carbon-nitride nanoribbons” Shuai ZhangChong LiS. F. Li, Q. Sun, Z. X. Guo, and Yu Jia, Appl. Phys. Lett. 104, 172111 (2014) 

DOI: https://doi.org/10.1063/1.4875022

 

[24] “Magicity of Transition Metal Nanoclusters Based on Generalized Wulff Construction” S. F. Li, X. J. Zhao, X. S. Xu, Y. F. Gao*, and Zhenyu Zhang*, Phys.Rev.Lett.111, 115501 (2013) (IF=7.512) 另见郑州大学新闻报:http://www16.zzu.edu.cn/msgs/vmsgisapi.dll/onemsgmsgid=1309111647442221089

DOI: https://doi.org/10.1103/physrevlett.111.115501

 

[23] “The highly active Ce4O8nanoparticle for CO oxidation” Jinpeng Zhang, Zhaoming Fu, Zongxian Yang, Shunfang LiPhys. Lett. A, 3763235 (2012)

DOI: https://doi.org/10.1016/j.physleta.2012.07.038

 

[22] “High inertness of W@Si12cluster toward O2 molecule” S. F. Li*, Xinlian Xue, Hao Zhai, Xinchuang Nie, Fei. Wang, Q. Sun, Yu Jia, Z.X.Guo Phys. Lett. A, 376, 1454 (2012)

DOI: https://doi.org/10.1016/j.physleta.2012.03.005

 

[21] “Ab initio study of larger Pbn clusters stabilized by Pb7 units possessing significant covalent bonding” Haisheng Li, Yong Ji, Fei Wang, S. F. Li, Q. Sun, and Yu Jia, Phys. Rev. B 83, 075429 (2011)

DOI: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.88.075429

 

[20] “First-principles calculations on the role of Ni-doping in Cun clusters: from geometric and electronic structures to chemical activities toward CO2” S. L. Han, Xinlian Xue, X. C. Nie, H. Zhai, F. Wang, Q. Sun, Yu Jia, S. F. Li* and Z.X.Guo* Phys. Lett. A, 374, 4324 (2010)

DOI: https://doi.org/10.1016/j.physleta.2010.08.068

 

[19] “Hcp metal nanoclusters with hexagonal A-A bilayer stacking stabilized by enhanced covalent bonding” S. F. Li*, Haisheng Li, Xinlian Xue, Yu Jia, Z. X. Guo, Zhenyu Zhang and X. G. Gong, Phys. Rev. B 82, 035443 (2010)

DOI: https://doi.org/10.1103/PhysRevB.82.035443

 

[18] “CO2 Activation and Total Reduction on Titanium (0001) Surface” S. F. Li* and Z. X. GuoJ. Phys. Chem. C 114, 11456 (2010)

DOI: https://doi.org/10.1021/jp100147g

 

[17] “First-principles study of structural and electronic properties of zincblende AlxIn1-xN” FeiWang, S. F. Li, Qiang Sun and Yu JiaSolid State Sciences, 12, 1641 (2010)

DOI: https://doi.org/10.1016/j.solidstatesciences.2010.07.016

 

[16] “Stability and electronic properties of the O-terminated Cu2O(111) surfaces: First-principles investigation” Cong Li, FeiWang, S. F. Li, Q. Sun, Yu JiaPhys. Lett. A, 374, 2994 (2010)

DOI: https://doi.org/10.1016/j.physleta.2010.05.029

 

[15] “Noble and alkali adatoms on a Si(111)√3 × √3–Ag surface: a first-principles study”  Xin Xie, J. M. Li, W. G. Chen, F. Wang, S. F. Li, Q Sun and Yu Jia, J. Phys: Cond. Matter. 22, 085001(2010)

DOI: https://doi.org/10.1088/0953-8984/22/8/085001

 

[14] “Oxygen vacancy pairs on CeO2 (110): A DFT+U study” Zongxian Yang, Xiaohu Yu, Zhansheng Lu, Shunfang Li, Kersti Hermansson, Phys. Lett. A 3732786 (2009)

DOI: https://doi.org/10.1016/j.physleta.2009.05.055

 

[13] “First-principles calculation of the 6.1 Å family bowing parameters and band offsets” Fei Wang, Yu Jia, Shunfang Li, and Qiang SunJ. Appl. Phys.105, 043101 (2009)

DOI: https://doi.org/10.1063/1.3072688 

 

[12] “First-principles investigation of mechanical and electronic properties of MNNi3 (M=Zn, Mg, or Cd)” Chong Li, W. G. Chen, Fei Wang, S. F. Li, Q. Sun, Songyou Wang, and Yu Jia, J. Appl. Phys.105, 123921 (2009)

DOI: https://doi.org/10.1063/1.3156641

 

[11] “Role of Ag-doping in small transition metal clusters from first-principles simulations” S. F. Li*, Zelun Shao, Shuli Han, Xinlian Xue, F. Wang, Q. Sun, Yu Jia, and Z. X. Guo, J. Chem. Phys, 131, 184301 (2009)

DOI: https://doi.org/10.1063/1.3261728

 

[10] “Size- and charge-dependent geometric and electronic structures of Bin (Bin-) clusters (n=2–13) by first-principles simulations” Liming Gao, Pinglin Li, Heqiang Lu, S. F. Li*, and Z. X. Guo, J. Chem. Phys.128, 194304 (2008)

DOI: https://doi.org/10.1063/1.2920484

 

[9] “First-principles local density approximation (generalized gradient approximation) +U study of catalytic CenOm clusters: U value differs from bulk” S. F. Li*, Heqiang Lu, Pinglin Li, Zongxian Yang, and Z. X. Guo J. Chem. Phys. 128, 164718 (2008)

DOI: https://doi.org/10.1063/1.2907857

 

[8] “No cage, no tube: Relative stabilities of Nanostructures” S. F. Li, Liming Gao, X. G. Gong, Z. X. Guo*J. Phys. Chem. C, 112, 13200 (2008)

DOI: https://pubs.acs.org/doi/10.1021/jp8052289

 

[7]“Structural and electronic properties of Run clusters (n=2-14) studied by first-principles calculations” Shunfang Li*Haisheng Li, Jing Liu, XinlianXue, Yongtao Tian, Hao He and Yu Jia Phys. Rev. B 76, 045410 (2007)

DOI: https://doi.org/10.1103/PhysRevB.76.045410

 

[6] “Neutral and negatively charged Al12X ( X=Si , Ge, Sn, Pb) clusters” S. F. Li, and X. G. GongPhys. Rev. B 74, 045432 (2006)

DOI: https://doi.org/10.1103/PhysRevB.74.045432

 

[5] “Ab initio studies on the reaction of O2 with Ban (n=2, 5) clusters” S. F. Li, Xinlian Xue, G. Chen and D. W. Yuan, Yu Jia, X. G. GongJ. Chem. Phys. 124, 224711 (2006)

DOI: https://doi.org/10.1063/1.2205851

 

[4] “First-principles studies on the adsorption of molecular oxygen on Ba(110) surface” S. F. Li*, Xinlian Xue, Pinglin Li, Xinjian Li and Yu Jia, Phys. Lett. A 352, 526(2006)

DOI: https://doi.org/10.1016/j.physleta.2005.12.040

 

[3] “Stable cubic metal-semiconductor alloy clusters:X4Y4(X=Cu, Ag, Au, Ti;Y=C, Si)” S. F. Li*, XinlianXue, Y. Jia, Gaofeng Zhao, Mingfeng Zhang, and X. G. Gong,  Phys. Rev. B 73, 165401 (2006)

DOI: https://doi.org/10.1103/PhysRevB.73.165401

 

[2] “First-principles studies on the reactions of O2 with silicon clusters” S. F. Li, X.G. Gong, J. Chem. Phys. 122, 174311 (2005)

DOI: https://doi.org/10.1063/1.1885465

 

[1] “Charge-induced structural changes in Al12C clusters” S. F. Li, X.G. Gong, Phys. Rev. B 70075404 (2004)

DOI: http://dx.doi.org/10.1103/PhysRevB.70.075404

l  培养研究生情况:

已经培养博士生3名,硕士研究生20多名;正在培养博士2名,硕士生9名。拟每年招收博士研究生1-2名,硕士研究生3名(硕博连读者优先),欢迎大家报考。

郑州大学物理学院凝聚态计算与理论物理研究所 All Right Reserved.  地址:郑州大学主校区物理学院A楼4楼