(48). Fang, Z.; Li, X.; Shi, W.; Li, Z.; Guo, Y.; Chen, Q.; Peng, L.; Wei, X. Interlayer Binding Energy of Hexagonal MoS 2 as Determined by an In Situ Peeling-to-Fracture Method. J. Phys. Chem. C 2020, 124 (42), 23419–23425. https://doi.org/10.1021/acs.jpcc.0c06828.
(47). Sun, M.; Yu, B.; Hong, M.; Li, Z.; Lyu, F.; Li, X.; Li, Z.; Wei, X.; Zhang, Z.; Zhang, Y.; Chen, Q. Controlling the Facet of ZnO during Wet Chemical Etching Its (0001¯) O‐Terminated Surface. Small 2020, 16 (14), 1906435. https://doi.org/10.1002/smll.201906435.
(46). Cheng, S.; Sharma, V.; Poyraz, A. S.; Wu, L.; Li, X.; Marschilok, A. C.; Takeuchi, E. S.; Takeuchi, K. J.; Fernández-Serra, M.; Zhu, Y. Water-Induced Formation of an Alkali-Ion Dimer in Cryptomelane Nanorods. Chem. Sci. 2020, 11 (19), 4991–4998. https://doi.org/10.1039/D0SC01517B.
(45). Zhu, W.; Fu, J.; Liu, J.; Chen, Y.; Li, X.; Huang, K.; Cai, Y.; He, Y.; Zhou, Y.; Su, D.; Zhu, J.-J.; Lin, Y. Tuning Single Atom-Nanoparticle Ratios of Ni-Based Catalysts for Synthesis Gas Production from CO2. Applied Catalysis B: Environmental 2020, 264, 118502. https://doi.org/10.1016/j.apcatb.2019.118502.
(44). Cheng, S.; Wu, Z.; Langelier, B.; Kong, X.; Coenen, T.; Hari, S.; Ra, Y.; Rashid, R. T.; Pofelski, A.; Yuan, H.; Li, X.; Mi, Z.; Guo, H.; Botton, G. A. Nanoscale Structural and Emission Properties within “Russian Doll”‐Type InGaN/AlGaN Quantum Wells. Adv. Optical Mater. 2020, 8 (17), 2000481. https://doi.org/10.1002/adom.202000481.
(43). Chen, M.; Li, X.; Yang, F.; Li, B.; Stracensky, T.; Karakalos, S.; Mukerjee, S.; Jia, Q.; Su, D.; Wang, G.; Wu, G.; Xu, H. Atomically Dispersed MnN 4 Catalysts via Environmentally Benign Aqueous Synthesis for Oxygen Reduction: Mechanistic Understanding of Activity and Stability Improvements. ACS Catal. 2020, 10 (18), 10523–10534. https://doi.org/10.1021/acscatal.0c02490.
(42). Li, Y.; Li, X.; Pillai, H. S.; Lattimer, J.; Mohd Adli, N.; Karakalos, S.; Chen, M.; Guo, L.; Xu, H.; Yang, J.; Su, D.; Xin, H.; Wu, G. Ternary PtIrNi Catalysts for Efficient Electrochemical Ammonia Oxidation. ACS Catal. 2020, 10 (7), 3945–3957. https://doi.org/10.1021/acscatal.9b04670.
(41). Chen, X.; Xu, W.; Shi, Z.; Pan, G.; Zhu, J.; Hu, J.; Li, X.; Shan, C.; Song, H. Europium Ions Doped WOx Nanorods for Dual Interfacial Modification Facilitating High Efficiency and Stability of Perovskite Solar Cells.Nano Energy2021, 80, 105564.https://doi.org/10.1016/j.nanoen.2020.105564.
(40). Guo, N.; Xiao, L.; Gong, F.; Luo, M.; Wang, F.; Jia, Y.; Chang, H.; Liu, J.; Li, Q.; Wu, Y.; Wang, Y.; Shan, C.; Xu, Y.; Zhou, P.; Hu, W. Light-Driven WSe2-ZnO Junction Field-Effect Transistors for High-Performance Photodetection.Advanced Science2020, 7 (1), 1901637.https://doi.org/10.1002/advs.201901637.
(39).Radtke, M.; Slablab, A.; Van Vlierberghe, S.; Lin, C.-N.; Lu, Y.-J.; Shan, C.-X. Light Extraction from CVD-Grown <400> Single Crystal Diamond Nanopillars. Selective Charge State Manipulations with 0V SF6 Plasma.arXiv:2020, 2001.05069.
(38). Wang, F.; Liu, J.; Huang, W.; Cheng, R.; Yin, L.; Wang, J.; Sendeku, M. G.; Zhang, Y.; Zhan, X.; Shan, C.; Wang, Z.; He, J. Subthermionic Field-Effect Transistors with Sub-5 Nm Gate Lengths Based on van Der Waals Ferroelectric Heterostructures.Science Bulletin2020, 65 (17), 1444–1450.https://doi.org/10.1016/j.scib.2020.04.019.
(37). Xu, T.; Wang, H.; Chen, X.; Luo, M.; Zhang, L.; Wang, Y.; Chen, F.; Shan, C.; Yu, C. Recent Progress on Infrared Photodetectors Based on InAs and InAsSb Nanowires.Nanotechnology2020, 31 (29), 294004.https://doi.org/10.1088/1361-6528/ab8591.
(36). Wen, Y.; Liu, Z.; Zhang, Y.; Xia, C.; Zhai, B.; Zhang, X.; Zhai, G.; Shen, C.; He, P.; Cheng, R.; Yin, L.; Yao, Y.; Sendeku, M. G.; Wang, Z.; Ye, X.; Liu, C.; Jiang, C.; Shan, C.; Long, Y.; He, J. Tunable Room-Temperature Ferromagnetism in Two-Dimensional Cr2Te3.Nano Letters2020.https://doi.org/10.1021/acs.nanolett.9b05128.
(34). Radtke, M.; Slablab, A.; Van Vlierberghe, S.; Lin, C.-N.; Lu, Y.-J.; Shan, C.-X. Plasma Treatments and Light Extraction from Fluorinated CVD-Grown (400) Single Crystal Diamond Nanopillars.C2020, 6 (2), 37.https://doi.org/10.3390/c6020037.
(33). Su, L.-X.; Lou, Q.; Shan, C.-X.; Chen, D.-L.; Zang, J.-H.; Liu, L.-J. Ag/Nanodiamond/g-C3N4 Heterostructures with Enhanced Visible-Light Photocatalytic Performance.Applied Surface Science2020, 525, 146576.https://doi.org/10.1016/j.apsusc.2020.146576.
(32). Zheng, H.; Chen, Z.; Zhu, H.; Tang, Z.; Wang, Y.; Wei, H.; Shan, C. Dispersion of Exciton-Polariton Based on ZnO/MgZnO Quantum Wells at Room Temperature*.Chinese Phys. B2020, 29 (9), 097302.https://doi.org/10.1088/1674-1056/ab99b3.
(31). Liang, W.; Shi, Z.; Li, Y.; Ma, J.; Yin, S.; Chen, X.; Wu, D.; Tian, Y.; Tian, Y.; Zhang, Y.; Li, X.; Shan, C. Strategy of All-Inorganic Cs3Cu2I5/Si-Core/Shell Nanowire Heterojunction for Stable and Ultraviolet-Enhanced Broadband Photodetectors with Imaging Capability.ACS Appl. Mater. Interfaces2020, 12 (33), 37363–37374.https://doi.org/10.1021/acsami.0c10323.
(30). Li, S.; Shi, Z.; Zhang, F.; Wang, L.; Ma, Z.; Wu, D.; Yang, D.; Chen, X.; Tian, Y.; Zhang, Y.; Shan, C.; Li, X. Ultrastable Lead-Free Double Perovskite Warm-White Light-Emitting Devices with a Lifetime above 1000 Hours.ACS Appl. Mater. Interfaces2020, 12 (41), 46330–46339.https://doi.org/10.1021/acsami.0c14557.
(29). Han, J.; He, M.; Yang, M.; Han, Q.; Wang, F.; Zhong, F.; Xu, M.; Li, Q.; Zhu, H.; Shan, C.; Hu, W.; Chen, X.; Wang, X.; Gou, J.; Wu, Z.; Wang, J. Light-Modulated Vertical Heterojunction Phototransistors with Distinct Logical Photocurrents.Light Sci Appl2020, 9 (1), 1–10.https://doi.org/10.1038/s41377-020-00406-4.
(28). Chen, Z.; Zheng, H.; Zhu, H.; Tang, Z.; Wang, Y.; Wei, H.; Su, S.; Shen, Y.; Shan, C. Robust Polariton Bose–Einstein Condensation Laser via a Strong Coupling Microcavity.Laser & Photonics Reviews2020.https://doi.org/10.1002/lpor.202000273.
(27). Chen, X.; Xu, W.; Shi, Z.; Pan, G.; Zhu, J.; Hu, J.; Li, X.; Shan, C.; Song, H. Europium Ions Doped WOx Nanorods for Dual Interfacial Modification Facilitating High Efficiency and Stability of Perovskite Solar Cells.Nano Energy2021, 80, 105564.https://doi.org/10.1016/j.nanoen.2020.105564.
(26). Zhang, Z.; Lin, C.; Yang, X.; Tian, Y.; Gao, C.; Li, K.; Zang, J.; Yang, X.; Dong, L.; Shan, C. Solar-Blind Imaging Based on 2-Inch Polycrystalline DiamondPhotodetector Linear Array.Carbon2020.https://doi.org/10.1016/j.carbon.2020.11.013.
(25). Ye, Y.-L.; Lou, Q.; Shen, C.-L.; Wei, J.-Y.; Liu, Z.-Y.; Liang, Y.-C.; Zang, J.-H.; Dong, L.; Shan, C.-X. Reprintable Paper Realized Employing ZnO-Based Photocatalytic Color Conversion of Dyes.J. Phys. D: Appl. Phys.2020, 53 (46), 465107.https://doi.org/10.1088/1361-6463/aba973.
(24). Liu, T.; Yang, X.-G.; Li, Z.; Hu, Y.-W.; Lv, C.-F.; Zhao, W.-B.; Zang, J.-H.; Shan, C.-X. Two-Step High-Pressure High-Temperature Synthesis of Nanodiamonds from Naphthalene.Chinese Phys. B2020, 29 (10), 108102.https://doi.org/10.1088/1674-1056/abad1c.
(23). Chen, Y.; Zhang, K.; Yang, X.; Chen, X.; Sun, J.; Zhao, Q.; Li, K.; Shan, C. Solar-Blind Photodetectors Based on MXenes-Ga2O3 Schottky Junctions.J. Phys. D: Appl. Phys.2020, 53 (48), 484001.https://doi.org/10.1088/1361-6463/abae36.
(22). Shen, C.-L.; Lou, Q.; Liu, K.-K.; Dong, L.; Shan, C.-X. Chemiluminescent Carbon Dots: Synthesis, Properties, and Applications.Nano Today2020, 35, 100954.https://doi.org/10.1016/j.nantod.2020.100954.
(21). Deng, Y.; Wei, J.; Sun, J.; Zhang, Y.; Dong, L.; Shan, C.-X. Enhancing the Mechanoluminescence of Traditional ZnS:Mn Phosphors via Li+ Co-Doping.Journal of Luminescence2020, 225, 117364.https://doi.org/10.1016/j.jlumin.2020.117364.
(20). Li, K.; Yang, X.; Tian, Y.; Chen, Y.; Lin, C.; Zhang, Z.; Xu, Z.; Zang, J.; Shan, C. Ga2O3 Solar-Blind Position-Sensitive Detectors.Sci. China Phys. Mech. Astron.2020, 63 (11), 117312.https://doi.org/10.1007/s11433-020-1581-4.
(19). Shen, C.-L.; Zheng, G.-S.; Wu, M.-Y.; Wei, J.-Y.; Lou, Q.; Ye, Y.-L.; Liu, Z.-Y.; Zang, J.-H.; Dong, L.; Shan, C.-X. Chemiluminescent Carbon Nanodots as Sensors for Hydrogen Peroxide and Glucose.Nanophotonics2020, 0 (0).https://doi.org/10.1515/nanoph-2020-0233.
(18). Liang, Y.-C.; Gou, S.-S.; Liu, K.-K.; Wu, W.-J.; Guo, C.-Z.; Lu, S.-Y.; Zang, J.-H.; Wu, X.-Y.; Lou, Q.; Dong, L.; Gao, Y.-F.; Shan, C.-X. Ultralong and Efficient Phosphorescence from Silica Confined Carbon Nanodots in Aqueous Solution.Nano Today2020, 34, 100900.https://doi.org/10.1016/j.nantod.2020.100900.
(17). Li, Y.; Shi, Z.; Liang, W.; Wang, L.; Li, S.; Zhang, F.; Ma, Z.; Wang, Y.; Tian, Y.; Wu, D.; Li, X.; Zhang, Y.; Shan, C.; Fang, X. Highly Stable and Spectrum-Selective Ultraviolet Photodetectors Based on Lead-Free Copper-Based Perovskites.Mater. Horiz.2020, 7 (2), 530–540.https://doi.org/10.1039/C9MH01371G.
(16). Li, L.; Chen, H.; Fang, Z.; Meng, X.; Zuo, C.; Lv, M.; Tian, Y.; Fang, Y.; Xiao, Z.; Shan, C.; Xiao, Z.; Jin, Z.; Shen, G.; Shen, L.; Ding, L. An Electrically Modulated Single-Color/Dual-Color Imaging Photodetector.Advanced Materials2020, 32 (24), 1907257.https://doi.org/10.1002/adma.201907257.
(15). Ma, Z.-Z.; Shi, Z.-F.; Wang, L.-T.; Zhang, F.; Wu, D.; Yang, D.-W.; Chen, X.; Zhang, Y.; Shan, C.-X.; Li, X.-J. Water-Induced Fluorescence Enhancement of Lead-Free Cesium Bismuth Halide Quantum Dots by 130% for Stable White Light-Emitting Devices.Nanoscale2020, 12 (6), 3637–3645.https://doi.org/10.1039/C9NR10075J.
(14). Ma, Z.; Shi, Z.; Qin, C.; Cui, M.; Yang, D.; Wang, X.; Wang, L.; Ji, X.; Chen, X.; Sun, J.; Wu, D.; Zhang, Y.; Li, X. J.; Zhang, L.; Shan, C. Stable Yellow Light-Emitting Devices Based on Ternary Copper Halides with Broadband Emissive Self-Trapped Excitons.ACS Nano2020, 14 (4), 4475–4486.https://doi.org/10.1021/acsnano.9b10148.
(13). Ma, Z.; Shi, Z.; Yang, D.; Zhang, F.; Li, S.; Wang, L.; Wu, D.; Zhang, Y.; Na, G.; Zhang, L.; Li, X.; Zhang, Y.; Shan, C. Electrically-Driven Violet Light-Emitting Devices Based on Highly Stable Lead-Free Perovskite Cs 3 Sb 2 Br 9 Quantum Dots.ACS Energy Lett.2020, 5 (2), 385–394.https://doi.org/10.1021/acsenergylett.9b02096.
(12). Wang, C.-J.; Yang, X.; Zang, J.-H.; Chen, Y.-C.; Lin, C.-N.; Liu, Z.-X.; Shan, C.-X. Ultraviolet Irradiation Dosimeter Based on Persistent Photoconductivity Effect of ZnO.Chinese Phys. B2020.https://doi.org/10.1088/1674-1056/ab8891.
(11). Liu, K.-K.; Liu, Q.; Yang, D.-W.; Liang, Y.-C.; Sui, L.-Z.; Wei, J.-Y.; Xue, G.-W.; Zhao, W.-B.; Wu, X.-Y.; Dong, L.; Shan, C.-X. Water-Induced MAPbBr3@PbBr(OH) with Enhanced Luminescence and Stability.Light Sci Appl2020, 9 (1), 44.https://doi.org/10.1038/s41377-020-0283-2.
(10).Shen, C.-L.; Lou, Q.; Zang, J.-H.; Liu, K.-K.; Qu, S.-N.; Dong, L.; Shan, C.-X. Near-Infrared Chemiluminescent Carbon Nanodots and Their Application in Reactive Oxygen Species Bioimaging.Advanced Science2020, 7 (8), 1903525.https://doi.org/10.1002/advs.201903525.
(9). Zhao, W.-B.; Du, M.-R.; Liu, K.-K.; Zhou, R.; Ma, R.-N.; Jiao, Z.; Zhao, Q.; Shan, C.-X. Hydrophilic ZnO Nanoparticles@Calcium Alginate Composite for Water Purification.ACS Appl. Mater. Interfaces2020, 12 (11), 13305–13315.https://doi.org/10.1021/acsami.9b23458.
(8). Liang, Y.-C.; Shang, Y.; Liu, K.-K.; Liu, Z.; Wu, W.-J.; Liu, Q.; Zhao, Q.; Wu, X.-Y.; Dong, L.; Shan, C.-X. Water-Induced Ultralong Room Temperature Phosphorescence by Constructing Hydrogen-Bonded Networks.Nano Res.2020.https://doi.org/10.1007/s12274-020-2710-3.
(7). Liu, Y.; Li, X.; Guo, Y.; Yang, T.; Chen, K.; Lin, C.; Wei, J.; Liu, Q.; Lu, Y.; Dong, L.; Shan, C. Modulation on the Electronic Properties and Band Gap of Layered ReSe2 via Strain Engineering.Journal of Alloys and Compounds2020, 827, 154364.https://doi.org/10.1016/j.jallcom.2020.154364.
(6). Sun, Z.; Jiang, M.; Mao, W.; Kan, C.; Shan, C.; Shen, D. Nonequilibrium Hot-Electron-Induced Wavelength-Tunable Incandescent-Type Light Sources.Photon. Res.2020, 8 (1), 91–102.https://doi.org/10.1364/PRJ.8.000091.
(5). Liu, Z.-Y.; Shen, C.-L.; Lou, Q.; Zhao, W.-B.; Wei, J.-Y.; Liu, K.-K.; Zang, J.-H.; Dong, L.; Shan, C.-X. Efficient Chemiluminescent ZnO Nanoparticles for Cellular Imaging.Journal of Luminescence2020, 221, 117111.https://doi.org/10.1016/j.jlumin.2020.117111.
(4). Wei, J.-Y.; Lou, Q.; Zang, J.-H.; Liu, Z.-Y.; Ye, Y.-L.; Shen, C.-L.; Zhao, W.-B.; Dong, L.; Shan, C.-X. Scalable Synthesis of Green Fluorescent Carbon Dot Powders with Unprecedented Efficiency.Advanced Optical Materials2020, 8 (7), 1901938.https://doi.org/10.1002/adom.201901938.
(3). Lv, C.; Yang, X.; Shi, Z.; Wang, L.; Sui, L.; Li, Q.; Qin, J.; Liu, K.; Zhang, Z.; Li, X.; Lou, Q.; Yang, D.; Zang, J.; Liu, R.; Liu, B.; Shan, C.-X. Pressure-Induced Ultra-Broad-Band Emission of a Cs2AgBiBr6 Perovskite Thin Film.J. Phys. Chem. C2020, 124 (2), 1732–1738.https://doi.org/10.1021/acs.jpcc.9b11187.
(2). Yang, X.; Lv, C.; Yao, Z.; Yao, M.; Qin, J.; Li, X.; Shi, L.; Du, M.; Liu, B.; Shan, C.-X. Band-Gap Engineering and Structure Evolution of Confined Long Linear Carbon Chains@double-Walled Carbon Nanotubes under Pressure.Carbon2020, 159, 266–272.https://doi.org/10.1016/j.carbon.2019.12.057.
(1). Yang, X.; Lv, C.; Liu, S.; Zang, J.; Qin, J.; Du, M.; Yang, D.; Li, X.; Liu, B.; Shan, C.-X. Orthorhombic C14 Carbon: A Novel Superhard Sp3 Carbon Allotrope.Carbon2020, 156, 309–312.https://doi.org/10.1016/j.carbon.2019.09.049.