崔昊,男,副教授、硕士生导师,毕业于武汉大学遥感信息工程学院,获摄影测量与遥感专业博士学位,主要从事点云处理算法、深度学习、可解释机器学习相关研究。主讲课程《激光雷达遥感》、《激光与热红外遥感》。联系方式:cuihao@zzu.edu.cn
主要科研项目:
[1] 国家自然科学基金青年科学基金项目,基于点云骨架提取的铁路扣件紧固状态快速测量方法,主持
[2] 中国博士后科学基金第66批面上项目,基于结构光点云的铁路扣件弹条扣压状态快速测量方法,主持
[3] 中国博士后科学基金第74批面上项目,融合点云与图像半监督深度学习的地铁隧道表观病害检测方法研究,主持
[4] 2023年河南省科技攻关项目,基于移动激光雷达的地铁盾构隧道快速智能病害检测技术,主持
[5] 2026年河南省教育厅重点科研项目,高速铁路轨道结构服役性能跨模态检测方法与劣化机理研究,主持
[6] 盾构隧道病害快速检测点云处理软件,主持
[7] 车载移动测量多源数据融合软件,主持
[8] 濮阳地震构造智能服务平台建设项目,主持
[9] 北宋皇陵数字化保护与虚拟重建展示云平台,参与
近年来发表的SCI文章:
[1]Cui, H., Li, J., Hu, Q., He, L., Tao, Y., Xu, L., Mao, Q., 2026. TTM: A concise yet effective surface reconstruction approach for tunnel point cloud from mobile mapping system. Tunnelling and Underground Space Technology 171, 107411. (1区TOP)
[2] Cui Hao, Mao, Qingzhou, Li, Jian, Hu, Qingwu, Tao, Yiwen, Ma, Jie, Li, Zhi, 2024. Shield Tunnel Dislocation Detection Method Based on Semantic Segmentation and Bolt Hole Positioning of MLS Point Cloud. IEEE Transactions on Geoscience and Remote Sensing 62, 1–15. (1区TOP)
[3] Cui, H., Li, J., Mao, Q., Hu, Q., Dong, C., Tao, Y., 2024. STSD: A large-scale benchmark for semantic segmentation of subway tunnel point cloud. Tunnelling and Underground Space Technology 150, 105829. (1区TOP)数据开源地址https://github.com/lichking2017/STSD, https://pan.baidu.com/s/19efiwjhhk0PPnOKddmQvqw?pwd=25b9
[4] Cui H, Ren X, Mao Q, et al. Shield subway tunnel deformation detection based on mobile laser scanning[J]. Automation in Construction, 2019, 106: 102889.(1区TOP)
[5] Mao Q, Cui H*, Hu Q, et al. A rigorous fastener inspection approach for high-speed railway from structured light sensors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 143: 249-267.(1区TOP)
[6]Li, J., Peng, C., Gu, W., Han, G., Zhu, J., Tao, Y., Cui, H.*, Jin, X., 2025. A point cloud simplification method using clustering and saliency for cultural heritage reconstruction. npj Heritage Science 13, 445. (1区TOP)
[7]Li, J., Yang, J., Han, G., Wu, H., Zhu, J., Cui, H.*, 2025. Automated generation of archeological line drawings from sculpture point cloud based on weighted centroid projection. npj Heritage Science 13, 162. (1区TOP)
[8]Tao, Y., Yang, M., Ren, J., Zhu, H., Liang, Z., Li, J., Cui, H.*, 2026. Towards precision limnology: An explainable AI framework decoding spatiotemporal algal dynamics in Chinese major lakes. Journal of Hazardous Materials 501, 140879. (1区TOP)
[9] Cui, H., Tao, Y., Li, J., Zhang, J., Xiao, H., Milne, R., 2024. Predicting and analyzing the algal population dynamics of a grass-type lake with explainable machine learning. Journal of Environmental Management 354, 120394. (2区TOP)
[10]Li, J., Li, H., Han, G., Wu, H., Cui, H.*, Gu, W., Zhu, J., Jiang, B., 2025. SVC-DAD: An novel local shape descriptor for cross-source point cloud registration. Measurement 255, 117981. (2区)
[11]李健, 李焕涛, 吴浩, 崔昊*. 2025. 改进球形体素局部形状描述符的跨源点云配准. 红外与毫米波学报 44, 840. (3区)
[12] Tao, Y., Ren, J., Zhu, H., Li, J., Cui, H.*, 2024. Exploring spatiotemporal patterns of algal cell density in lake Dianchi with explainable machine learning. Environmental Pollution 356, 124395. (2区TOP)
[13] Tao, Y., Zhao, J., Cui, H.*, Liu, L., He, L., 2024. Exploring the impact of socioeconomic and natural factors on pulmonary tuberculosis incidence in China (2013–2019) using explainable machine learning: A nationwide study. Acta Tropica 253, 107176. (2区)
[14] Cui H, Hu Q, Mao Q, et al. Spiral trajectory planning approach for underground cavity measurements based on laser scanning[J]. Measurement, 2017, 110: 166-175.(2区)
教学及学生竞赛奖励:
[1] 第一、二届全国激光雷达遥感讲课比赛二等奖,2024、2025
[2] 美国大学生数学建模竞赛Honorable Mention奖,2023
[3] 美国大学生数学建模竞赛Honorable Mention奖,2024
[4] 美国大学生数学建模竞赛Honorable Mention奖,2025
[5] Mathorcup高校数学建模挑战赛-大数据竞赛二等奖,2023
[6] 华数杯全国大学生数学建模竞赛二等奖,2023
