王永吉,男,1992年生,郑州大学直聘副教授,硕士生导师。2020年博士毕业于中国科学院大学(中国科学院地理科学与资源研究所)地图学与地理信息系统专业,2020年至今就职于郑州大学地球科学与技术学院。主要研究方向为遥感与GIS(遥感智能解译,数字土壤制图等),主讲课程为《多元地理时空统计与分析》。联系方式:wangyongji@zzu.edu.cn。
主持有河南省高等学校重点科研项目1项,并参与科技基础性工作专项、国家自然科学基金、中国科学院科技服务网络计划(STS计划)等多项科研项目,在International Journal of Applied Earth Observation and Geoinformation,Precision Agriculture,IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing等国内外重要学术期刊上发表多篇学术论文。
主持和参与的主要科研项目:
1. 河南省高等学校重点科研项目基础研究计划:基于局部空间异质性的土壤样本潜在异常值识别方法研究,22A170021,主持
2. 科技基础性工作专项项目:新世纪版《中华人民共和国国家大地图集》编研,2013FY112800,参与
3. 国家自然科学基金项目:城市人群的PM2.5暴露-反应时空机理研究,41471414,参与
4. 中国科学院科技服务网络计划(STS计划)项目:智慧农业核心技术突破与集成示范,参与
5. 中国科学院科技服务网络计划(STS计划)项目子课题:县域现代农业信息服务平台研发与建设,参与
发表的学术论文和专利:
[1] Wang Yongji, Qi Qingwen, Bao Zhengyi*, Wu Lili, Geng Qingling, and Wang Jun, "A novel sampling design considering the local heterogeneity of soil for farm field-level mapping with multiple soil properties," , Precision Agriculture, 2022.
[2] Wang Yongji, Wu Lili*, Qi Qingwen, and Wang Jun, "Local Scale-Guided Hierarchical Region Merging and Further Over- and Under-Segmentation Processing for Hybrid Remote Sensing Image Segmentation," , IEEE Access, vol. 10, pp. 81492-81505, 2022.
[3] Tian Zhihui, Liu Yi, Wang Yongji*, and Wu Lili, "A Tourist Behavior Analysis Framework Guided by Geo-Information Tupu Theory and Its Application in Dengfeng City, China," ISPRS International Journal of Geo-Information, vol. 11, no. 4, 2022.
[4] Wang Yongji*, Tian Zhihui, Qi Qingwen, and Wang Jun, "Double-Variance Measures: A Potential Approach to Parameter Optimization of Remote Sensing Image Segmentation," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 2314-2326, 2021.
[5] Wang Yongji, Qi Qingwen, Jiang Lili, Ying Liu. Hybrid Remote Sensing Image Segmentation Considering Intrasegment Homogeneity and Intersegment Heterogeneity [J], IEEE Geoscience and Remote Sensing Letters, 2020, 17(1):22-26.
[6] Wang yongji, Jiang lili*, Qi Qingwen, Liu Ying, Jun Wang. Remote Sensing-Guided Sampling Design with Both Good Spatial Coverage and Feature Space Coverage for Accurate Farm Field-Level Soil Mapping [J], Remote Sensing, 2019, 11(16): 1946.
[7] Wang Yongji, Qi Qingwen, Liu Ying, Jiang Lili, Wang Jun. Unsupervised segmentation parameter selection using the local spatial statistics for remote sensing image segmentation [J], International Journal of Applied Earth Observation and Geoinformation, 2019, 81:98-109.
[8] Wang Yongji, Meng Qingyan, Qi Qingwen, Yang Jian, Liu Ying. Region Merging Considering Within- and Between-Segment Heterogeneity: An Improved Hybrid Remote-Sensing Image Segmentation Method [J], Remote Sensing, 2018, 10(5): 781.
[9] Wang Yongji, Qi Qingwen, Liu Ying. Unsupervised Segmentation Evaluation Using Area-Weighted Variance and Jeffries-Matusita Distance for Remote Sensing Images [J], Remote Sensing, 2018, 10(8): 1193.
[10] 王永吉,孟庆岩,杨健,孙云晓,李鹏,邢武杰.一种基于特征选择的面向对象遥感影像分类方法[J].科学技术与工程,2016,16(32):107-113.
[11] Wang Jun, Jiang Lili, Qi Qingwen, and Wang Yongji, "Exploration of Semantic Geo-Object Recognition Based on the Scale Parameter Optimization Method for Remote Sensing Images,", ISPRS International Journal of Geo-Information, vol. 10, no. 6, Jun 2021.
[12] Jun Wang, Lili Jiang*, Qingwen Qi,Yongji Wang. An Improved Hybrid Segmentation Method for Remote Sensing Images. International Journal of Geo-Information.2019.11.28
[13] 刘莹,孟庆岩,王永吉,杨健,刘洪杰,孙震辉.基于特征优选与支持向量机的不透水面覆盖度估算方法[J].地理与地理信息科学,2018,34(01):24-31+3.
[14] 孟庆岩,王永吉,杨健,孙震辉。一种结合改进快速合并算法的分水岭分割方法,2021(发明专利)