鲁帅,男,1992年10月出生,汉族,山东德州人。博士研究生学历,工学博士学位,工程师,硕士研究生导师。
2010.09-2014.07 郑州大学软件工程专业,获工学学士学位;
2016.09-2022.07 郑州大学软件工程专业,获工学博士学位;
2022.12-至今 郑州大学国家超级计算郑州中心,从事教学、科研工作。
科研项目:
[1]河南省重大科技专项,201400210400,基于多模态数据的肺癌智能诊疗关键技术研究与示范应用,2021.01-2024.12,结题,参与。
[2]河南省重点研发专项,241111210500,基于AIGC技术辅助孤独症谱系障碍智能诊断及康复训,2024.01-2026.12,在研,课题主持。
[3]河南省科技攻关项目,252102211042,面向计算抗体设计的多视角特征融合方法研究,2025.01-2026.12,在研,主持。
科研成果:
近期主要论文选录
(一)第一作者/通讯作者
[1]GDPocket: Global Feature and Dual AttentionEnhanced 3D U-Net for Protein Binding SitePrediction[C].23rdAsia Pacific Bioinformatics Conference (APBC2025,Poster).
[2]HSSPPI:Hierarchical andSpatial-SequentialModeling for PPIsPrediction[J] Briefings in Bioinformatics, 2025, 26(2): bbaf079.
[3]PMSFF: Improved Protein Binding Residues Prediction Through Multi-scale Sequence-based Feature Fusion Strategy[J]. Biomolecules, 2024, 14(10): 1220.
[4]Tandem Molecular Intercalation Exfoliated TiSe2Nanosheets for Enhanced Sodium-ion Storage[J]. Energy Storage Materials, 2023, 65:103131.
[5]Protein-Protein Interaction Site Prediction Based on Attention Mechanism and Convolutional Neural Networks[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023,20(6):3820-3829.
[6]A Structure-based B-cell Epitope Prediction Model Through Combing Local and Global Features[J]. Frontiers in Immunology, 2022: 3054.
[7]Leveraging Sequential and Spatial Neighbors Information by Using CNNs Linked with GCNs for Paratope Prediction[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19(1):68-74.
[8]Attention-based Convolutional Neural Networks for Protein-Protein Interaction Site Prediction[C]. 2021 IEEE International Conference on Bioinformatics and Biomedicine(BIBM2021,Oral presentation), 2021, 141-144.
[9]A Sequence-based Antibody Paratope Prediction Model Through Combing Local-Global Information and Partner Features[C]. 17th International Symposium on Bioinformatics Research and Applications(ISBRA2021,Oral presentation), 2021, 179-190.
(二)其他作者
[1]Revealing Key Structural and Operating Parameters on Salt/Dye Separation of Loose Nanofiltration Membrane by Ensemble Machine Learning[J].Journal of Membrane Science2025, 732: 124274.
[2]Transcriptome Dynamics of Gossypium Purpurascens in Response to Abiotic Stresses by Iso-Seq and RNA-Seq Data[J] Scientific Data, 2024, 11(1): 477.
研究领域及方向:
人工智能、生物信息学。
联系方式:
邮箱:ieslu@zzu.edu.cn