吕秋杰,男,1993年生,博士,副研究员,硕士生导师。2024年6月毕业于中山大学智能工程学院,获得计算机科学与技术博士学位。CCF TCCC执行委员。长期从事小样本学习、联邦学习、医学图像分析、生物信息等研究工作。在IEEE Transactions on Neural Networks and Learning Systems、Signal Transduction and Targeted Therapy、Chemical Science、Neural Networks、Expert Systems with Applications等领域重要学术期刊发表论文20余篇,并受邀担任IEEE TNNLS、KBS、NN、ESWA、PR等期刊审稿人。
研究经历:
2024.06–至今,郑州大学,人工智能
2023.01–2024.01,新加坡国立大学,医学图像分析
代表性论文:
1.Qiujie Lv, Guanxing Chen, Ziduo Yang, et al. Meta-MolNet: A cross domain benchmark for few examples drug discovery[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024. (中科院一区Top)
2.Qiujie Lv, Guanxing Chen, Ziduo Yang, et al. Meta learning with graph attention networks for low-data drug discovery[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 35(8): 11218-11230. (中科院一区Top)
3.Qiujie Lv, Guanxing Chen, Haohuai He, et al. TCMBank: bridges between the largest herbal medicines, chemical ingredients, target proteins, and associated diseases with intelligence text mining[J]. Chemical Science, 2023, 14(39): 10684-10701. (中科院一区Top)
4.Qiujie Lv, Guanxing Chen, Haohuai He, et al. TCMBank-the largest TCM database provides deep learning-based Chinese-Western medicine exclusion prediction[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 127. (中科院一区Top)
5.Qiujie Lv, Jun Zhou, Ziduo Yang, et al. 3D graph neural network with few-shot learning for predicting drug–drug interactions in scaffold-based cold start scenario[J]. Neural Networks, 2023, 165: 94-105.(中科院一区Top)
6.Qiujie Lv, Guanxing Chen, Lu Zhao, et al. Mol2Context-vec: learning molecular representation from context awareness for drug discovery[J]. Briefings in Bioinformatics, 2021, 22(6): bbab317. (中科院二区Top)
7.Qiujie Lv, Chen Hsin-Yi, Zhong Weibin, et al. A multi-task group Bi-LSTM networks application on electrocardiogram classification[J]. IEEE Journal of Translational Engineering in Health and Medicine, 2019, 8: 1-11. (中科院三区)
获奖情况:
2024年 IEEE 超智能技术委员会(Hyper-Intelligence Technical Committee,HITC) 杰出博士论文奖
2024年 博士研究生“国家奖学金”;
招生信息:
最新动态见:https://scholar.google.com/citations?user=Gu-qh44AAAAJ
课题组科研经费充足,算力资源充裕!
欢迎对科创竞赛感兴趣的本科生加入!
欢迎对人工智能、深度学习、医学图像分析、生物信息等方向感兴趣的优秀学子报考研究生!
联系方式:lvqiujie@zzu.edu.cn,15515589793(微信)