人工智能系

高源

日期:2025-02-25 信息来源: 浏览量:

    

高源,男,博士,直聘研究员, 计算机与人工智能学院教师、硕士生导师。主要研究方向包括计算机视觉、多模态学习、知识图谱、张量计算与图计算等,在IEEE TPDS/TSC/TNNLS/TII/IOTJ/TCSS、Information Fusion等IEEE/ACM Transactions国际顶级期刊与ACM MM、WWW、WACV等国际学术会议上发表论文20余篇;近年来主持国家自然科学基金青年基金项目1项,参与国家重点研发计划等国家级项目3项,包括作为主要骨干成员(排名前五)参与科技部2030“新一代人工智能” 重大专项-人工智能基础模型关键技术研究。担任国际学术会议IEEE HPCC-2021(中国计算机学会推荐 C类国际学术会议)等会议宣传主席,IEEE DIKW-2022程序主席,IEEE Cybermatics Congress, CBD-2023执行主席,并担任CCF协同计算专委会/CCF嵌入式专委会执行委员。

工作经历

2025.01 –至今,直聘研究员,郑州大学,计算机与人工智能学院

2022.7 –2024.12,副教授,海南大学,计算机科学与技术学院;

近年来主持或参加科研项目

[1]国家自然科学基金青年基金项目“面向边缘视频语义分割的张量深度计算模型研究”,2024-01至2026-12,30万,在研,主持

[2]科技部2030“新一代人工智能” 重大专项:人工智能基础模型关键技术研究, 2023-02至2024-03,990万,结题,项目技术骨干(排名第五)

[3]国家重点研发计划“网络协同制造和智能工厂 ”重点专项,基于开放架构的中小企业应用服务平台,2019/12-2022/11,结题,参与

[4]国家重点研发计划“网络空间安全”重点专项,,云数据中心威胁预警与精准防御关键技术与系统, 2017/07-2020/12,结题,参与

近年来发表论文

[1]Yuan Gao, Q. Zhao, L. T. Yang, J. Yang and L. Ren, "Tensor-Representation-Based Multiview Attributed Graph Clustering with Smooth Structure," IEEE Transactions on Neural Networks and Learning Systems, doi:10.1109/TNNLS.2025.3526590, 2025. (中科院一区TOP, IF=10.4)

[2]J. Yang, X. Wang, L. T. Yang, Yuan Gao, S. Yang and X. Wang, "Learning Schema Embeddings for Service Link Prediction: A Coupled Matrix-Tensor Factorization Approach," IEEE Transactions on Services Computing, doi:10.1109/TSC.2025.3541552, 2025,唯一通讯,CCF A类期刊

[3]J. M. Yang, D. Feng, Yuan Gao, C. Liu. Online Multi-Object Tracking Based on Record Confidence and Hierarchical Association for Cyber-Physical-Social Intelligence, Big Data Mining and Analytics,doi:10.26599/BDMA.2025.9020024, 2025. 唯一通讯,(中科院一区, IF=7.7)

[4]Yuan Gao, Zhao, Q., Yang, L. T., Yang, J., & Yang, J. (2024). Tensor Representation Based Multi-View Graph Contrastive Learning for IoE Intelligence. IEEE Internet of Things Journal, DOI:10.1109/JIOT.2024.3415612, 2024. (中科院一区,IF=10.6)

[5]Yang, J., Jiang, X., Yuan Gao, Yang, L. T., & Yang, J. (2024, October). Generalize to Fully Unseen Graphs: Learn Transferable Hyper-Relation Structures for Inductive Link Prediction. In Proceedings of the 32nd ACM International Conference on Multimedia, 2024:1274-1282. 2024, 唯一通讯,CCF A类会议

[6]Yang, J., Yang, S., Yuan Gao, Yang, J., & Yang, L. T. Multimodal Contextual Interactions of Entities: A Modality Circular Fusion Approach for Link Prediction. In Proceedings of the 32nd ACM International Conference on Multimedia, 2024: 8374-8382, 2024, 唯一通讯,CCF A类会议

[7]Wang, H., Yang, J., Yang, L. T., Yuan Gao, Ding, J., Zhou, X., & Liu, H. (2024). Mvtucker: Multi-view Knowledge Graphs Representation Learning Based on Tensor Tucker Model. Information Fusion, 106, 102249. 2024. 唯一通讯,(中科院一区, IF=17.564)

[8]Jing Yang, Laurence T. Yang, Fellow, IEEE, Hao Wang, Yuan Gao. Temporal Interaction Embedding for Link Prediction in Global News Event Graph, IEEE Transactions on Computational Social Systems, DOI: 10.1109/TCSS.2024.3357696, 2024. 唯一通讯, (中科院二区,IF=5.0)

[9]Yuan Gao, L. T. Yang, Jing Yang, Yaliang Zhao. Attention U-Net Based on Bi-ConvLSTM and Its Optimization for Smart Healthcare, IEEE Transactions on Computational Social Systems, 2023, DOI:10.1109/TCSS.2023. 3237923 (中科院二区,IF=5.0)

[10]Yuan Gao, Laurence T. Yang, Jing Yang, Dehua Zheng, Yaliang Zhao. Jointly Low-Rank Tensor Completion for Estimating Missing Spatiotemporal Values in Logistics Systems. IEEE Transactions on Industrial Informatics, 2022, 19 (2): 1814-1822 (中科院一区, IF=12.3)

[11]Yuan Gao, Guangming Zhang, Chunchun Zhang, Jinke Wang, Laurence T. Yang, Yaliang Zhao. Federated Tensor Decomposition-Based Feature Extraction Approach for Industrial IoT. IEEE Transactions on Industrial Informatics, 2021,17(12): 8541 -8549. (中科院一区, IF=12.3)

[12]Yuan Gao, Laurence T. Yang, Dehua Zheng, Yang, Jing Yang, Yaliang Zhao. Quantized Tensor Neural Network. ACM/IMS Transactions on Data Science, 2021, 2(4), 1-18 (IEEE/ ACM Transactions)

[13]Yuan Gao, Laurence T. Yang, Yaliang Zhao, Jing Yang. Feature Extraction of High-dimensional Data Based on J-HOSVD for Cyber-Physical-Social Systems. ACM Transactions on Management Information Systems, 2021, 13(3), 1-21 (IEEE/ ACM Transactions)

招生信息

具有良好的数理功底、动手实践及英文读写能力,最好熟悉Python以及Pytorch等框架,并具有强烈的学术研究动机,能够踏实做研究;

希望在本科生阶段(在读本科生)、硕士研究生阶段(本科保研、考研)、参与相关科学研究的学生,可发Email或者电话联系;

团队与多所国内外科研院校保持良好合作关系,优秀者可推荐前往深造;

欢迎对计算机视觉、多模态深度学习、知识图谱等方向感兴趣的硕士以及优秀的本科生同学联系我加入课题组。

联系方式:yuangaozzu@foxmail.com


上一条: 高需

下一条: 徐明亮

版权所有 © 郑州大学计算机与人工智能学院  All Rights Reserved.