
 
 一、个人简介
 何秉羲,男,1994年生,初聘教授;2021 年至 2025 年于北京航空航天大学从事博士后研究,2021 年获中国科学院大学博士学位,2016 年获河南大学学士学位,主要研究方向包括医学影像人工智能分析与多组学融合分析,主持国家自然科学基金青年项目、中国博士后科学基金项目,并参与多项国自然国家重点研发计划项目。以第一(含共同)作者在 Nature Communications、Journal for Immunotherapy of Cancer、Engineering 等国际期刊发表论文十余篇,现任IEEE Journal of Biomedical and Health Informatics、Physics in Medicine & Biology、npj Digital Medicine、npj Precision Oncology 等多个国际期刊审稿人。获中国图学学会优秀博士学位论文奖,Advancing Health with AI (Nature Conference) Golden Poster等。
 
 二、代表性项目
 [1] 国家自然科学基金青年项目,面向肺癌免疫治疗疗效的影像-多分子可解释预测模型研究,2024,主持
 [2] 博士后自然科学基金面上项目,基于CT-病理影像和跨模态深度融合网络的中晚期肺癌患者免疫治疗疗效预测研究,2021,主持
 [3] 国家自然科学基金重点项目,跨尺度融合肺癌影像、病理与微环境分子特征智能评估新辅助免疫治疗疗效的研究,2023,参与
 [5] 国家自然科学基金培育项目,基于影像-病理多组学深度学习的晚期肺癌免疫治疗疗效预测, 2023, 参与 
 [6] 北京市自然科学基金面上项目,基于超声影像多目标自动分割的躯干神经阻滞智能引导模型研究,2023,参与
 [7] 国家自然科学基金面上项目,基于多模态影像组学的胃癌新辅助化疗疗效预测研究, 2020, 参与 
 
 三、代表性论文
 [1] Mengmeng Zhao#, Gang Xue#, Bingxi He# (何秉羲), et al. Integrated multiomics signatures to optimize the accurate diagnosis of lung cancer[J]. Nature Communications, 2025, 16(1): 84.
 [2] Bingxi He# (何秉羲), Yu Guo#, Di Dong*, Huimao Zhang*, Jie Tian*, From signal to knowledge: The diagnostic value of rawdata in artificial intelligence prediction of human data for the first time [J]. Engineering, 2024, 34: 60-69.
 [3] Bingxi He# (何秉羲), Caixia Sun#, Hailin Li#, Yongbo Wang#, Di Dong*, Chang Chen*, Jianhua Ma*, Jie Tian*.Breaking Boundaries in Radiology: Redefining AI Diagnostics via Raw Data ahead of Reconstruction. Physics in Medicine and Biology, 2024, 69(7): 075015.
 [4] Qiang Wang#, Bingxi He# (何秉羲), Jie Yu#, Hui Zheng*, Zhenchao Tang*, Automatic Segmentation of Ultrasound-Guided Quadratus Lumborum Blocks Based on Artifcial Intelligence. Journal of Imaging Informatics in Medicine, 2024, 1-12.
 [5] Yunlang She#, Bingxi He# (何秉羲), Fang Wang#, Yifan Zhong#, Hongjie Hu*, Di Dong*, Chang Chen*, Jie Tian*, Deep learning for predicting major pathological response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer: a multicenter study. Ebiomedicine, 2022, 86.
 [6] Bingxi He# (何秉羲), Yifan Zhong#, Yongbei Zhu#, Di Dong*, Jie Tian*, Dong Xie*, Deep learning for predicting immunotherapeutic efficacy in advanced non-small cell lung cancer patients: a retrospective study combining progression-free survival risk and overall survival risk[J]. Translational Lung Cancer Research, 2022, 11(4): 670.
 [7] Panwen Tian#, Bingxi He# (何秉羲), Wei Mu#, Zhipei Huang*, Weimin Li*, Assessing PD-L1 expression in non-small cell lung cancer and predicting responses to immune checkpoint inhibitors using deep learning on computed tomography images [J]. Theranostics, 2021, 11(5): 2098. 
 [8] Bingxi He# (何秉羲), Yongxiang Song#, Lili Wang#, Minglei Yang*, Dong Xie*, Chang Chen*, A machine learning-based prediction of the micropapillary/solid growth pattern in invasive lung adenocarcinoma with radiomics [J], Translational Lung Cancer Research, 2021, 10(2): 955. 
 [9] Bingxi He# (何秉羲), Di Dong#, Yunlang She#, Zhipei Huang*, Tao Jiang*, Jie Tian*, Chang Chen*, Predicting clinical outcomes to immunotherapy in advanced non-small cell lung cancer via tumor mutational burden radiomic biomarker [J]. Journal for immunotherapy of cancer, 2020, 8(2):
 [10] Mengjie Fang#, Bingxi He# (何秉羲), Li Li#, Hongjun Li*, Jie Tian*, CT radiomics can help screen the coronavirus disease 2019 (COVID-19): a preliminary study [J]. Science China-Information Sciences, 2020, 63(7): 1-8.
 
 四、招生信息
 课题组科研经费充足,算力资源充裕!
 本人易于沟通,爱好广泛,虽年轻但较努力,不拖研究生后腿。
 欢迎对AI for Medicine方向感兴趣的学生报考研究生!
 同样欢迎对该方向感兴趣的本科生加入!也欢迎同行一起多多交流!
 期望未来一起努力,共同进步!
 联系方式:hebingxi@zzu.edu.cn