人工智能系

李亚飞​

日期:2022-09-16 信息来源: 浏览量:

d0e3f641b11eb91765943eaeaa73bde

 

1. 个人简介

李亚飞,教授,博士生导师,2015年博士毕业于香港浸会大学计算机科学系。现任计算机与人工智能学院副院长、智能集群系统教育部工程研究中心副主任。主要研究领域包括时空大数据、人机融合智能、Sim-to-Real等。主持多项国家级及省部级项目,包括国家自然科学基金面上/青年项目、中原英才计划-青年拔尖人才项目、河南省自然科学基金优秀青年基金/重点项目等。已在国际顶级期刊与会议上发表论文40余篇,包括中国计算机学会推荐A类期刊和会议TKDETMCTSCPVLDBICDEWWWIJCAIAAAIScience China Information Science等,以及中国科协推荐领军期刊《中国科学:信息科学》、《航空学报》、《自动化学报》等。研究成果获河南省自然科学一等奖、河南省教育厅学术成果一等奖等奖励,部分成果已被政府机构和国际知名企业应用于实际产品中,例如香港特区政府疫情风险追踪系统安心出行、三星研究院Samsung Pay US等。长期担任国内外多家重要学术刊物及会议的审稿人,如TKDETSCTMCICDESIGKDDWWWMM等。现为中国计算机学会数据库专委会、中国图学学会可视化与认知计算专委会、中国空间数据智能专委会等多个学术组织的委员。指导多名本科生和研究生获得国家奖学金、学科竞赛国家奖,以及入选“中国科协青年人才托举工程博士生专项计划”等奖励。

 

2. 招生信息

目前主要从事时空大数据、机器学习、城市计算、智慧医疗等领域的研究。如果您具有良好学习力和自我驱动力,且以后有志于从事学术研究或工程技术研发工作,请将个人简历和本科成绩单发送至ieyfli@zzu.edu.cn。个人主页:https://zzudb.github.io/

 

3. 代表性项目

[1]     国家自然科学基金面上项目, 特情扰动下保障作业人机共融作业规划方法研究, 2023 主持

[2]     国家自然科学基金面上项目, 数据驱动的特种车辆布列调度优化与可视推演, 2019, 主持

[3]     国家自然科学基金青年项目, 基于社交媒体的动态车辆合乘服务研究, 2016, 主持

[4]     国家自然科学基金重点项目, 基于大数据的城市洪涝灾害预警研究, 2018, 参与

[5]     中国博士后基金面上项目,面向共享出行的动态车辆合乘服务研究,2018年,主持

[6]     河南省自然科学基金重点项目, 面向机场地面保障的人机智能调度方法研究, 2024, 主持

[7]     河南省自然科学基金优青项目, 实时路网下大规模动态共乘关键技术研究, 2022, 主持

[8]     中原英才计划-中原科技创新青年拔尖人才项目,2024, 主持

 

4. 代表性论文(*通讯)

[1]     Y. Li, Y. Pan, G. Zhu, S. He, M. Xu, and J. Xu, “Charging-Aware Task Assignment for Urban Logistics with Electric Vehicles,” IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE), 2025. (Rank: CCF-A)

[2]     G. Zhu, Y. Li*, K. Wang, L. Chen, and M. Xu, “Profit-Aware Online Crowdsensing Task Assignment for Intelligent Transportation Services,” Science China Information Sciences (SCIS), 2025. (Rank: CCF-A)

[3]     W. Chen, Y. Li*, B. Mei, G. Zhu, J. Wu, M. Xu. “Credit Assignment and Fine-Tuning Enhanced Reinforcement Learning for Collaborative Spatial Crowdsourcing,” International Joint Conference on Artificial Intelligence (IJCAI), 2025. (Rank: CCF-A)

[4]     Q. Wu, Y. Li*, L. Li, Y. Jin, S. He, M. Xu. “HLMTrans: A Sim-to-Real Transfer Framework for Spatial Crowdsourcing with Human-Guided Language Models,” International Joint Conference on Artificial Intelligence (IJCAI), 2025. (Rank: CCF-A)

[5]     Y. Li, W. Chen, J. Yan, H. Li, L. Gao, M. Xu. “Gradient-Guided Credit Assignment and Joint Optimization for Dependency-Aware Spatial Crowdsourcing,’’ AAAI Conference on Artificial Intelligence (AAAI Oral), 2025. (Rank: CCF-A)

[6]     H. Li, Y. Li*, W. Chen, S. He, M. Xu, J. Xu. “Effective Task Assignment in Mobility Prediction-Aware Spatial Crowdsourcing,’’ IEEE International Conference on Data Engineering (IEEE ICDE), 2025. (Rank: CCF-A)

[7]     B. Mei, Y. Li*, W. Chen, L. Luan, G. Zhu, Y. Jin, J. Xu. “Catcher: A Cache Analysis System for Top-K Pub/Sub Service,’’ Proceedings of the VLDB Endowment (PVLDB), 2024. (Rank: CCF-A)

[8]     Q. Wu, Y. Li*, J. Yan, M. Zhang, J. Xu, and M. Xu, “Adaptive Task Assignment in Spatial Crowdsourcing: A Human-in-the-Loop Approach,’’ IEEE Transactions on Mobile Computing (IEEE TMC), 2024. (Rank: CCF-A)

[9]     Q. Wu, Y. Li*, G. Zhu, B. Mei, J. Xu, and M. Xu, “Prediction-Aware Adaptive Task Assignment for Spatial Crowdsourcing,’’ IEEE Transactions on Mobile Computing (IEEE TMC), 2024. (Rank: CCF-A)

[10]   Y. Li, H. Li, B. Mei, X. Huang, J. Xu, and M. Xu, “Fairness-Guaranteed Task Assignment for Crowdsourced Mobility Services,’’ IEEE Transactions on Mobile Computing (IEEE TMC), 2023. (Rank: CCF-A)

[11]   Y. Li, Y. Li, Y. Peng, X. Fu, J. Xu, and M. Xu, “Auction-based Crowdsourced First and Last Mile Logistics,’’ IEEE Transactions on Mobile Computing (IEEE TMC), 2022. (Rank: CCF-A)

[12]   Y. Li, H. Gu, R. Chen, J. Xu, H. Hu, M. Xu, “Top-k Publish/Subscribe for Ride Hitching,’’ IEEE International Conference on Data Engineering (IEEE ICDE), 2021. (Rank: CCF-A)

[13]   Q. Wu, Y. Li*, H. Li, D. Zhang, G. Zhu, “AMRAS: A Visual Analysis System for Spatial Crowdsourcing,’’ Proceedings of the VLDB Endowment (PVLDB), 2022. (Rank: CCF-A)

[14]   Y. Li, H. Li, X. Huang, J. Xu, Y. Han, and M. Xu, “Utility-Aware Dynamic Ridesharing in Spatial Crowdsourcing,’’ IEEE Transactions on Mobile Computing (IEEE TMC), 2022. (Rank: CCF-A)

[15]   Y. Li, Q. Wu, X. Huang, J. Xu, W. Gao, and M. Xu, “Efficient Adaptive Matching for Real-Time City Express Delivery,’’ IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE), 2022. (Rank: CCF-A)

[16]   Y. Li, H. Gu, R. Chen, J. Xu, S. Guo, J. Xue, and M. Xu, “Efficient Top-K Matching for Publish/Subscribe Ride Hitching,’’ IEEE Transactions on Knowledge and Data Engineering  (IEEE TKDE) 2021. (Rank: CCF-A)

[17]   Y. Li, J. Wan, R. Chen, J. Xu, X. Fu, H. Gu, P. Lv, and M. Xu, “Top-K Vehicles Matching in Social Ridesharing: A Price-aware Appraoch,’’ IEEE Transactions on Knowledge and Data Engineering  (IEEE TKDE), 2021. (Rank: CCF-A)

[18]   L. Chen, Y. Li*, J. Xu, C.S. Jensen, “Why-not Spatial Keywords Top-k Queries: A Direction-aware Approach,’’ IEEE Transactions on Knowledge and Data Engineering  (IEEE TKDE), 2018. (Rank: CCF-A)

[19]   Y. Li, R. Chen, L. Chen, J. Xu. “Towards Social-aware Ridesharing Group Query Services,’’ IEEE Transactions on Services Computing (IEEE TSC), 2017. (Rank: CCF-A)

[20]   Y. Li, R. Chen, J. Xu, Q. Huang, H. Hu, B. Choi, “Geo-Social K-Cover Group Queries for Collaborative Spatial Computing,’’ IEEE International Conference on Data Engineering (IEEE ICDE), 2016. (Rank: CCF-A)

[21]  Y. Li, R. Chen, J. Xu, H. Hu, B. Choi, “Geo-Social K-Cover Group Queries for Collaborative Spatial Computing,’’ IEEE Transactions on Knowledge and Data Engineering  (IEEE TKDE), 2015. (Rank: CCF-A)


上一条: 田侦

下一条: 李春雨

版权所有 © 郑州大学计算机与人工智能学院  All Rights Reserved.